| ectures

Introduction to C and C++

Object Oriented Basics
® Operators

Templates
STL Library

Introduction to C and C++

Simply put, C++ adds syntax sugar to make the code easier to write, and provides the benefits of
abstraction.

Object Oriented Basics

Topics:

* Classes and objects
® Constructors and destructors
* |nheritance

Classes and Objects

Fundamentally, an object is a collect of data and methods that you can invoke on it. Let's create an
object in C, and define APIs on it:

typedef struct {
int age;

} person_s;

void person_set age(person s* pointer, int age) {
pointer->age = age;

}

void c _usage() {
person_s person;
person_set age(&person, 123);

person.age = 456; // C has no concept of private/public}

The C API has the following limitations:

®* struct members (ie: age), are "public”

® This means that anyone can access the members of person s

* You manually have to create a function whose first parameter is person s *pointer such that this
function can modify the object in a mutable way

C++

In C++, the limitations are overcome, and the syntax becomes:

class person_class {

int m age;

public:
void set age(int age) {

m_age = age;

b i
void usage() {
person_class person;

person.set age(123);

// p.set age(123) really resolves to:
//person::set age(&person, 123);
// cannot access private

//person.m _age = 123;}

In a way, C++ just adds a little syntax sugar to achieve the following:

® Class has default visibility of private, hence m_age (as in member variable age) is private
* Public API doesn't need the mutable pointer passed in, it is automatic
© There is a hidden "this" pointer as a first parameter

Constructors

One of the severe limitations of C is that constructors are not automatic. Let's find out what that means:

class person_class {

int m_age;

public:

// "default" constructor

person class() {
std::cout << "Constructor of person class has been called" << std::endl;
m_age = 0;

}

void set age(int age) {
m_age = age;

1}

Default constructor is one you get for "free", and you may not always need to define it, especially if the
default constructor has empty code. However, if you specify another constructor with different
parameters, default constructor is deleted.

class person_class {

int m_age;

public:

// constructor

person _class(int age) {
std::cout << "Constructor of person class has been called" << std::endl;
m_age = age;

}

void set age(int age) {
m_age = age;

1}

In the code above, this effectively yields this syntax:

class person_class {

int m_age;

public:

person class() = delete;

// constructor

person _class(int age) {

std::cout << "Constructor of person class has been called" << std::endl;

m age = age;

1}

Destructors

Destructors are intuitively opposite of the constructors. Unlike a constructor when the function is
invoked when the object is built, the destructor is called when the object goes out of scope and is thus

destroyed.

class person_class {

int m age;

public:

~person_class() {

std::cout << "Destructor of person class has been called" << std::endl;

1}

Practical Example

class Vector {
private:

int* m_array;

int m_size; // Size of the vector
public:

// Constructor with size and default value

Vector(int size) {

m size = size;

m_array = new int[size];
std::cout <<

}
// Destructor

"Vector constructor called.

// Pointer to dynamically allocated array

Size: " << size << std::endl;

~Vector() {
delete[] m_array;
std::cout << "Vector destructor called. Size: " << size << std::endl;

1}

Exercise 1

Let's put all the knowledge acquired so far towards an exercise. We will build a simpler version of the
std::vector, or simply an integer array.

// file: vector.hh
class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
// Constructor with max size
Vector(int max_size);

~Vector();

bool push back(int value);

int pop_back();

int back();
int front();

int get size();

int get max size();

void clear();};

Self-test framework

Ideally, we would create a unit-test framework, but to keep things simple, we can use the assert() API to

provide a rudimentary unit-test framework.

#include <iostream>
#include <assert>
class Vector;

int main() {

Vector v(5);

assert(0 == v.get size());
assert(3 == v.get max _size());

assert(0 == v.pop_back());

assert(true == v.push back(123));
assert(l == v.get size());

assert (123 == v.pop back());

) oo

return 0;}

Copy Problem

There is a problem with our current design of the vector. The code below has an issue; please compile
and run the code and see what happens!

#include <iostream>
#include <assert>
class Vector;
int main() {
Vector v1(10);
// We want another vector with same properties as vl
// Problem: We did not allocate new memory but are now referring to vl's memory
Vector v2 = vl;

return 0;}

std::unique Pointer to the Rescue

After gaining advanced C++ experience, you will align to the fact that there should never be "naked
pointers” in C++. Pointers should always use more advanced pointers provided by the C++ 11 standard.

If we had built our vector like this, we would have caught the problem at compile-time rather than run-
time. Note that the code below is just a preview of what we will learn in the future, and this is not
required for the exercises as part of this article.

// file: vector.hh

#include <memory>

class Vector {
private:
std::unique ptr<int> m array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
// Constructor with max size
Vector(int max_size);

~Vector();

I coclp

Copy Constructor

The solution is that we need to "deep copy" the object which is called the copy constructor. Let's
implement the copy constructor and see how it will work.

class Vector {
// RULE: Whenever there is dynamic memory allocation (new operator)
// There shall always be a copy constructor to perform "deep copy"
Vector(const Vector& copy) {
m_max_size = copy.m_max_size;
// do not :
//m_array pointer = copy.m array pointer;
m _array pointer = new int[m max size]; // allocate your own memory, do not reference same memo
std::cout << "Vector COPY constructor is called for size " << m max size << std::endl;
// Deep copy
for(int i = 0; i < m max size; i++) {

m_array pointer[i] = copy.m array pointer[il];

// ..}

Rule of 3

The "Rule of Three" in C++ refers to a guideline for defining three specific member functions when a
class manages resources like dynamic memory (e.g., through pointers) to ensure proper behavior
regarding copying and destruction. The three key member functions are:

1. Destructor (~ClassName()):

® The destructor is responsible for releasing resources (like dynamic memory) held by an object
when it is destroyed.
® This is crucial to prevent memory leaks and properly clean up allocated resources.

2. Copy Constructor (ClassName(const ClassName& other)):

® The copy constructor creates a new object as a copy of an existing object.
* |t is used when an object is initialized from another object of the same type (e.g., during object
initialization, function parameter passing by value).

3. Copy Assignment Operator (ClassName& operator=(const ClassName& other)):

® The copy assignment operator defines how an existing object can be assigned the value of
another object of the same type.
* |tis invoked when you assign one object to another using the assignment operator = .

Sample Code for Rule of 3

class Vector {
int *m_memory for integers;
int m max_size;
int m current size;
void deep copy(const Vector& source) {

// Deep copy: Copy each member from one vector to another

for (int i=0; i < m_current size; i++) {

m_memory for integers[i] = source.m memory for integers[i];

}
public:
// Fixed size vector that allocates memory once but cannot grow (by design)
Vector(int max_size) {
printf("Constructor is called to allocate %d integers\n", max size);
m_max_size = max_size;
m _memory for integers = new int[m max size]; // Allocate memory dynamically

}
// Rule of 3: If dynamic memory, then:

// - We must destructor
// - Copy consructor
// - Assignment operator

// 1: Destructor
~Vector() {
std::cout << ("Destructor is called") << std::endl;
delete [] m_memory for integers;
}
#if 0 /* BUGGY CODE: */
// You get trivial copy constructor for free:
// But if you allocate dynamic memory, is this what you want? No!
Vector(const Vector& source) {
m max size = source.m max size;
m _current size = source.m current size;
// BUGGY CODE:
m_memory for integers = source.m memory for integers; // THIS IS THE PROBLEM
}
#endif
// 2: Copy constructor
Vector(const Vector& source) {
printf("Copy constructor called\n");
m max size = source.m max size;
m current size = source.m current size;

// THIS IS THE KEY: Allocate our own memory

// We do not wish to copy memory reference of another object literally
m memory for integers = new int[m max size];
deep copy(source);

}

// 3: Assignment operator

Vector& operator=(const Vector& source) {

printf("Assignment Operator called\n");

m_max_size = source.m max Size;
m current size = source.m current size;
m_memory for _integers = new int[m max size]; // THIS IS THE KEY
deep_copy(source);
return *this;
}
// Const APIs that do not modify the Vector instance
int get size() const { return m current size; }
int get max size() const { return m max size; }
void print memory location of integers() const {
printf("Memory allocated at\n");
for(int i = 0; 1 < m max _size; i++) {

printf(" [%d] = %p\n", 1, &n memory for integers[i]);

Exercise 2

Based on our learning so far, let us perform another exercise to create a string library.

#include <string.h>
#include <iostream>
// String library
class string {

char *m string;

int m max length;

// Bonus points if you use unique pointer
// std::unique ptr<char> m string;
public:
string(int max_length) {
m _max_length = max_length + 1; // +1 for NULL termination
m_string = new char[m_max_length];
}
// Rule of 3: Because we will allocate memory dynamically
~string() {
delete [] m string;
b
// Implement constructor to allocate as much memory as the c string
string(const char *c string);
// Rule of 3: 2) Implement the copy constructor
string(const string& copy);
// Rule of 3: 3) Implmement the assignment operator

string& operator=(const string& source);

// Mutable API to make all characters lowercase or uppercase
void to upper();

void to lower();

// Adding more data to the string
void append char(char c); // Append a char but only if string has memory available

void append string(const char *c string); // Append another c string only if string has memory ava

// Non-mutable APIs to check certain properties of the string
bool equals to(const char *c string);

bool contains(const char *c_string);

bool begins with(const char *c string);

int get length();

void print() { std::cout << "String is: << m string << "'" << std::endl; }
// Other mutable APIs

void clear();

void set(const char *string) {
strncpy(m_string, string, m_max length);
// All 3 lines do the same thing
m_string[m max length - 1] = '\0';

0;

//m string[m max length - 1] = NULL;

m string[m max length - 1]

// We need the line(s) above because in case strncpy() ran out of space, it won't null termina
// "hello" -> 6 spaces
// [0]1 =h, [1] =e, [2] =1, [3] =1, [4] =0, [5] = "\O';

Copy Constructor

The string class you built above has the same problem for the deep copy. Therefore, you will need to
create a copy constructor to be able to deep copy the string.

Pay close attention to this code:

class string {
// Rule of 3: 1) Functional destructor to deallocate dynamically allocated memory
~string() {
delete [] m string;
b
// Rule of 3: 2) Implement the copy constructor
string(const string& copy);
// Rule of 3: 3) Implmement the assignment operator

string& operator=(const string& source);}

Header and Source File

<TODO: Template of header and source file>

Operators

There are different types of operators in C++. More detail can be studied at this article.

Various Operators

1. Arithmetic

void arithmatic() {

int x = 0;
X =x+ 1;
X =x - 1;
X = X B 20
X =X/ 3;
X =X% 2;
X++;

DEEFN

Bitwise Operators

void bitwise() {

int x = 0;

X = X | 0b0001;
X = x & 0b000O;
X = x ~ 0b0001;

}

void great example of xor_operator() {

https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_arithmetic

int a

i

int b 0;

// Check if a and b are exclusive from each other
if ((a==1& b==0) || (a==08&b==1)) {
// ...

// We can actually do this:
if (a xor b)

// or

if (a ~ b)}

2. Assignment

void assignment() {

int x = 0;

X =x + 3; // full form
// shortcut

x
o°
1l
w w w w w w w w

3. Comparison

void comparison() {
int x = 0;

is

int y

if (x ==y)
if (x I=vy)
if (x > vy)
if (x <)
if (x >= y)
if (x <= vy)}

4. Logical

void logical() {
int x = 0;

int y = 1;

if (x=1&y == 1)
if (x=11]]y==1)
if (! (x=16& vy ==1))}

Operator Overloading

The operators would be boring if they were only applied to integers as demonstrated in the examples
above. We can actually inform the C++ compiler what operators should do for our classes. Let's reuse
the Vector of integers we built before and define some interesting operators.

// file: vector.hh
class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

https://en.cppreference.com/w/cpp/language/operator_logical

bool push back(int value);

int pop_back();

Vector operator+=(const Vector& other) const; // operator +=
Vector operator+(const Vector& other) const; // operator +
bool operator==(const Vector& other) const; // operator==

bool operator!=(const Vector& other) const; // operator!=

Vector operator*=(int multiply with); // * operator to multiply all integers by a number

//
b
// operator+ definition
Vector Vector::operator+=(const Vector& other) const {
// allocate memory that can hold data from both vectors

Vector result(this->m max size + other.m max size);

for (int 1 = 0; 1 < m _size; ++1i) {
result.push back(m array[i]);

}

for (int i = 0; i < other.m size; ++i) {

result.push back(other.m array[i]);

return result;

}

Vector Vector::operator+(const Vector& other) const {
Vector result(*this);
result += other;
return result;

}

// operator== definition

bool Vector::operator==(const Vector& other) const {
const bool is equal = true;
if (m_size != other.m size) {

return !is equal;

}
for (int 1 = 0; 1 < m size; ++1i) {
if (m_array[i] != other.m array[i]) {

return !is equal;

}
return is_equal;
}
// operator!= definition
bool Vector::operator!=(const Vector& other) const {
return !(*this == other);
}
Vector operator*=(int multiply with) {
for (int 1 = 0; 1 < m size; ++i) {
m _array[i] *= multiply with;
}

return *this;}

Here is how the operators may be used:

void vector plus operator example() {
puts("Let's practice strings");
Vector v1(6);
vl.push back(1);
vl.push back(2);
vl.push back(3);
Vector v2(3);
vl.push back(4);
vl.push back(5);
v1l.push back(6);
// Use our operator to add contents of two vectors
vl = vl + v2;
vl.print();
}
void vector multiply operator _example() {

Vector v1(6);

vl.push back(1);

vl.push back(2);

vl.push back(3);

// Multiply operator in action
vl *= 5;

vl.print();}

Exercises

Vector library operators

Let's implement a few more operators for your vector library. Typically, the [] operator is
implemented such that it returns a reference to one of the elements of the vector, but in our case, we

will return a read-only value.

class Vector {
private:
int* m array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();
// First implement an "at()" API
// Return an element at a particular index

int at(int index);

// Secondly, implement the [] operator:

const int operator[](int index);}

String library operators

Implement the following string operators, and also write unit-test code in main.cpp to test that the code
you wrote actually functions correctly.

class string

{
std::unique ptr<char[]> m string;
int m max length;

public:

string(int max_length);

string(const char *c string);

// Adds two strings together

string operator+=(const string& other) const;

// "hello world" - "world" = "hello"

string operator-=(const string& other) const;

// "hello" * 2 = "hellohello"

string operator*=(int how many times) const;

// Implement shift operators to trim beginning or end of string

// 0b1101 >> 1 ==> 0b0110

// "hello" >>= 1 ==> "hell"

// "hello" >>= 3 ==> "he"

string operator>>=(int shift right by) const;

// similar to python for slice operation

string operator<<=(int shift right by) const;

// All comparison operators are applicable

// string s1("hello"); string s2("world")

// if (sl == s2)

// if (sl != s2)

bool operator!=(const string &compare with) const {
return !(*this == compare with);

}

bool operator==(const string &compare with) const {

// 1
bool
bool
bool
bool
bool
bool

// todo

return false;

mplement comparison operators
operator<=(const string &compare with) const;
operator>=(const string &compare with) const;
operator<(const string &compare with) const;
operator>(const string &compare with) const;
operator!=(const char* compare with) const;

operator==(const char* compare with) const;

Templates

Templates and the need for header only code

In one of our previous lessons, we built our own "vector"”, but it was specifically designed to only hold
integers. But what if we wanted to store float , or char, or bool ? This can be accomplished by using
templates in C++.

Without a template

// file: vector.hh
class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m_size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

bool push back(int value);

int pop _back();

// ...}

With a template

// file: vector.hh
template <typename your type>
class Vector {

private:

http://books.socialledge.com/books/c-programming/page/object-oriented-basics#bkmrk-inheritance-0

your_type* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

bool push back(your type value);
your type pop back();

A cookt

Here is how you would use the code and have the C++ compiler multiply your code for different types:

int usage() {
Vector<int> my int vector v2(1);
Vector<char> my char vector v2(1);

Vector<float> my float vector v2(1);}

Sample 1

When you design your header file, especially with a template, your code can be input right within the
class itself.

// file: vector.hh
template <typename your type>
class Vector {
private:
your type* m _array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
// code for function can be right here
Vector(int max_size) {

m array = new int[max_size];

m max _size = max_ size;

m size = 0;

void push back(your type value) {
if (m_size < m _max size) {
m array[m size] = value;

m size++;

I ookt

Sample 2

// file: vector.hh
template <typename your type>
class Vector {
private:
your_type* m _array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
// we can declare functions but "define" them below
// this improves code readability

Vector(int max_size);
void push back(your type value);

70 ooa
}i
// We must use "scope" operator to define which class the function belongs to
Vector: :Vector(int max size) {
m array = new int[max size];

m max size = max size;

m size = 0;
}
void Vector::push back(your type value) {
if (m size < m max size) {
m array[m size] = value;
m _size++;

3}

Source Code Organization

Template code in header file only

The way templates work is that for each type, such as vector<int> or vector<bool> , the entire
header file is copied and pasted by the compiler for the new type. Because of this reason, classes that
use templates must be in header file only. This means that you cannot have vector.hh and also
vector.cc because the entire code has to exist in the header file only.

Standard code

Standard code that doesn't use templates can be in file.hh and also file.cc and doesn't need to be
in a header. Although not that many libraries sometimes tend to be header only and the code split to
file.cc is for cosmetic reasons only.

// Header file:
// File: adder.hh
#pragma once
// Example of header file and source file
// Class should only declare functions, but not define them
class adder {
public:

int x;

int y;

// Only declare functions, do not "define" functions

int get sum();};

And then there should be a separate *.cc file or *.cpp file:

// File: adder.cc
#include "adder.hh"
int adder::get sum() {

return x + vy;

STL Library

Before you read about the STL library, it is important to understand the Templates, so ensure that you
have covered that section before you start here.

Various Containers

There are different types of containers available in the STL library:
1. Sequence containers

array

An STL array is a fixed-size array, much like int array[5] . The difference is that the STL array is
more of a "first class citizen" in terms of providing APIs on this array which are iterators, and other
accessors such as size() , front() and back() .

vector

A vector is a more flexible container than an std::array because it can dynamically grow (or shrink).
Let us practice a code snippet that uses various APIs that this class provides.

#include <iostream>
#include <vector>
int main() {
// Create a vector of integers
std::vector<int> vec;
// Check if the vector is initially empty
std::cout << "Initially, is vector empty? " << (vec.empty() ? "Yes" : "No") << std::endl;
// Add elements to the vector

vec.push back(10);

http://books.socialledge.com/books/c-programming/page/templates
https://en.cppreference.com/w/cpp/container
https://cplusplus.com/reference/array/array/
https://cplusplus.com/reference/vector/vector/

vec.push_back(20);

vec.push back(30);

// Size and capacity after adding elements

std::cout << "Size after adding 3 elements: " << vec.size() << std::endl;
std::cout << "Capacity after adding 3 elements: " << vec.capacity() << std::endl;
// Increase capacity of the vector

vec.reserve(10);

std::cout << "Capacity after reserve(10): " << vec.capacity() << std::endl;
// Increase the size of the vector

vec.resize(5);

std::cout << "Size after resize(5): " << vec.size() << std::endl;

std::cout << "Capacity after resize(5): " << vec.capacity() << std::endl;
// Resize the vector to a smaller size does not reduce capacity
vec.resize(2);

std::cout << "Size after resize(2): " << vec.size() << std::endl;

std::cout << "Capacity remains the same: << vec.capacity() << std::endl;
// Shrink the vector to fit its size
vec.shrink to fit();
std::cout << "Capacity after shrink to fit: " << vec.capacity() << std::endl;
// Print current elements in the vector
std::cout << "Current elements in vector: ";
for (int i : vec) {
std::cout << i << " ";
}

std::cout << std::endl;

return 0;}

deque

forward_list

list

https://cplusplus.com/reference/deque/deque/
https://cplusplus.com/reference/forward_list/forward_list/
https://cplusplus.com/reference/list/list/

2. Associative containers

set

multiset

map

multimap

3. Unordered associative containers
unordered_set

unordered_multiset

unordered_map

unordered_multimap

Ilterators

Iterate with cbegin()

Algorithms library

Other Content

https://en.cppreference.com/w/cpp/iterator/begin
https://cplusplus.com/reference/set/set/
https://cplusplus.com/reference/set/multiset/
https://cplusplus.com/reference/map/map/
https://cplusplus.com/reference/map/multimap/
https://cplusplus.com/reference/unordered_set/unordered_set/
https://cplusplus.com/reference/unordered_set/unordered_multiset/
https://cplusplus.com/reference/unordered_map/unordered_map/
https://cplusplus.com/reference/unordered_map/unordered_multimap/
https://en.cppreference.com/w/cpp/algorithm

Streams

https://en.cppreference.com/w/cpp/io#Stream-based_I.2FO

