C++ Programming

Class Structure

® Development Environment
© C++ Development Environment (Legacy)
© C++ Development Environment (Docker)
* Assignments
© Development Environment
°© POSIX
® |Lectures
© Introduction to C and C++
© Object Oriented Basics
© Operators
°© Templates
© STL Library
© Algorithms Library
© Object Oriented Advanced
© Smart Pointers
© Function Pointers & Lambdas
© Threading Library

Class Structure

Description

This is a foundation course on learning modern C++ language (C++ 11 and beyond).

This course covers object-oriented programming using modern C++. Because most automation,
embedded applications, gaming, and many large data processing applications are written in C++, it is
essential that software developers understand and master it. Hardware engineers are increasingly
using C++ and OOP in system verification tasks, and as of the current decade, there has been a
noticeable shift from C to C++ on microcontroller systems.

This course offers an excellent foundation in developing optimized modern C++ applications. The
participants will learn to write faster and modular code, and the debugging techniques, for real-world
applications. There will be assignments and exercises to accompany the lectures.

Learning Outcomes
At the conclusion of the course, you should be able to:

®* Modern C++ (post C++11)

* Apply object oriented concepts to software development problems using modern C++

® Understand and use the basic programming constructs of C++

* Manipulate various C++ data types, such as arrays, strings, and pointers

* Write C++ code using principles of object-oriented programming

® Understand design patterns in C++ using singleton pattern

* Manage memory appropriately, including proper allocation/deallocation procedures using unique and
smart pointers

® Best practices (dos and don'ts)

® Utilize best practices from C++ GSL or Google Abseil libraries

1. Introduction

® Setup development environment

© Basics of Docker and container management

Review class structure

Operating System Fundamentals: Linux, Mac, POSIX, RTOS
* Modern approach to "manpages"

° tldr

© chatgpt

SSH and password-less login
® System Monitoring: top , df

Homework: Operating Systems and POSIX

2. Basic Syntax & Functions

® Basics
© Types, strings
© Control structures
® Declare and define functions
© Call by value, reference, pointer
© Qverloading
© Default parameters

3. Object Oriented Basics

Classes and objects

® Constructors and destructors

Inheritance
Rule of 3
Introduction to unique_ptr

4. Operators & Templates

® QOperators (=, [], ¥, -> etc.)
® STL library containers
© [terators
* Templates and the need for header only code

https://docker-curriculum.com/
https://tldr.sh/
https://chat.openai.com/
http://books.socialledge.com/books/c-programming/page/operators-019
http://books.socialledge.com/books/c-programming/page/stl-library
http://books.socialledge.com/books/c-programming/page/templates
http://books.socialledge.com/books/c-programming/page/object-oriented-basics

5. Midterm

* Review Questions
Feedback
® Streams

®* Chrono
® Exam

6. Object Oriented Advanced

® OO Inheritance

® Abstract classes

* Virtual and pure virtual functions
* Virtual destructors

® Polymorphism

7. Smart Pointers

® Unique pointer
® Shared pointer
* Weak pointer

8. More Advanced Topics

* Lambdas

© How it can be used
e Concurrency

© Threads

© Mutexes

© Condition Variables
® Deadlock Empire

http://books.socialledge.com/books/c-programming/page/object-oriented-advanced

9. Powerful Libraries

® Libraries
© Boost
© Guideline support library (GSL)
© Abseil
* Design patterns
© Singleton

10. Final Examination

* Review Questions
® Collect Feedback
® Exam

Development Environment

Development Environment

C++ Development

Environment (Legacy)

There is a more modern version of the C++ development environment. See this article.

This article provides more direct instructions to compile C++ code. More elaborate information can be
read at this Visual Studio Code page which is a highly recommended read for knowledge sake.

Setup Docker

The first thing is to download Docker; please visit https://www.docker.com/products/docker-desktop/ to
download Docker for your machine.

Download for Mac - Apple Chip

Download for Mac - Intel Chip
Download for Windows

Download for Linux

Install and Start Docker

After you start the Docker Desktop, you should land on a screen like the following. Feel free to poke
around and learn Dockers.

http://books.socialledge.com/books/c-programming/page/c-development-environment-bac
https://code.visualstudio.com/docs/devcontainers/containers
https://www.docker.com/products/docker-desktop/

Q, Search for images, containers, v.. | 3K

Containers Containers cue teedback ="

Images

Volumes

Builds m

Dev Environments BETA

@ F D

.\
C]

Docker Scout

¥
e

Your running containers show up here

A container is an isolated environment for your code
Extensions

@ Add Extensions

What is a container? How do | run a container?

5 mins 6 mins

Setup Visual Studio Code

We will use Visual Studio Code as an IDE. There has been tremendous amount of support and plugins
to serve as a really good code editor. And more importantly for us, it provides docker container for C++
development out-of-the-box.

Install Visual Studio Code

Please go to https://code.visualstudio.com/ to install Visual Studio Code for your machine. After
installation, go ahead and fire up the program.

Install Dev Containers

After installing and starting up Visual Studio Code, it is time to install a "devcontainers" extension to be
able to fire up your C++ development environment.

Much of the documentation is captured here a the devcontainers reference page. But, we will provide
brief details to get you going.

Go to "Extensions"”, search for "dev containers" and install it. You can also read this page for more
elaborate information.

https://code.visualstudio.com/
https://code.visualstudio.com/docs/devcontainers/containers
https://code.visualstudio.com/docs/devcontainers/tutorial
https://code.visualstudio.com/docs/devcontainers/tutorial

EXTENSIONS: MARKETPLA.. ¥ U =

devcontainer

devcontainer-utils ch 294

benfiola m

Devcontainer-Generator o 27
create a development container

Damokeris [Install |
ug .
Dev Containers < 23.7M * 45
@ Open any folder or repository in...
& Microsoft

35
py-marvel b 2K
Tools for working in a py-marvel ...

nathandemaria m

Setup Dev Container

After the Dev Container extension is installed, it is now time to start the C++ container. Click on the
green arrows on the bottom left side of Visual Studio Code.

This will bring up a menu, select New Dev Container .

‘ ISelect an option to open a Remote Window

Open Container Configuration File

New Dev Container...

Attach to Running Container...
Configure Container Features...

Rebuild Container

Type "C++", and select the C++ container:

Select Dev Container Configuration

C+4

C++ devcontainers &

Develop C++ applications on Linux. Includes Debian C++ build tools.

Grab a cup of coffee because building and starting this "Dev Container" will take a while. Click on "show
log" to view details.

PROBLEMS OuTPUT TERMIMAL PORTS Dev
0.0s

=> => extracting sha256:3c883f58084ec7d297498d34a23efe2379fT98bT6e9807b54f

=> => extracting shaZSE:23bﬂSefEff12cdBe?B?bfcBa5f384932$é2351433889f98f554

== => extracting shaZSE:358f23b?f1cBSebaEf584f915a2dTSfcgéﬁideaSCBQSbEBBdb

= => shaZSE:ISaeﬂanBb?SbSafSBETdEc?ZSElel?blcacZZTTZIBEQggﬁalc4a4c3553bﬁa
.4s

=> => sha256:ee0058828T6T@4edcdeedaB3™ = ~~° ~TTTTTT T T i rmmTmm mEm T mmes

, (i) Starting Dev Container (show log)
== => extracting sha256:bfé4c4lal26el

Checkpoint

Let's ensure that everything is running as expected. If you go back to Docker Desktop, you should see a
container running.

Containers cie reedback =

Container CPU usage Container memory usage

8.03% / 3200% (32 CPUs available) 263.3MB / 7.47GB

Q Search 1] . Only show running containers

|:| Name Image Status Port(s) CPU (%)
gallant |)

|:| m h227dA5] vsc-cpp-abi Running 8.03%

Visual Studio code attaches to this container and you should be able to add code and compile it at this
point.

Hello World

From the left-side of Visual Studio Code, create a new folder "hello_world™ (click on +folder icon).

~ CPP [DEV CONTAINER: C++... [} B U &

B |[hello_world

Add Source Files

Add these two files (thanks to ChatGPT):

CMakelLists.txt

CMakelLists.txt
cmake minimum_required(VERSION 3.0)
project(HelloWorld)
Define the source files
set (SOURCES
hello world.cpp
#another file.hh
)
Add executable targetadd executable(${PROJECT NAME} ${SOURCES})

hello_world.cpp

#include <iostream>
int main() {

std::cout << "Hello, World!" << std::endl;

return 0;}

Build and Run

Create a build directory, and right click it and choose Open in Integrated Terminal .

v hello_world
2) build New File...
A CMakelLists.txi New Folder...
C+ hello_world.cp Openin Integrated T

Type the following commands to validate that you can build and run the C++ code.

cmake ..

make./HelloWorld

vscode - .::képpf.deucuntainerfhellu_ynrldfhuild $ cmake ..
—- Configuring done

—— Generating done
— Build files have been written to: /workspaces/cpp/.devcontainer/hello_world/build

vscode + .../cpp/.devcontainer/hello_world/build $ make

[10@%] Built target HelloWorld
vscode + .../cpp/.devcontainer/hello_world/build $./HelloWorld

Hello, World!

Rerun

If you have closed Docker and Visual Studio code, here is the process to resume:

1. Go to Docker Desktop and restart your CPP Container
2. Open Visual Studio Code and attach to the running container

‘ Select an option to open a Remote Window

Open Container Configuration File
New Dev Container...

Attach to Running Container...

Configure Container Features...

How It Works

You were able to build code, and that's great, but it's important to also understand the details of how it
worked. The docker container doesn't retain state, and what happens is that your source code lives on
your machine, but it is mapped as a drive to the docker container. This way, whenever the docker

container restarts, it will not lose your source code.

Docker provides the infrastructure to achieve this and you can go to the Docker Desktop "Volume"
section to view the data. An even better article can be referenced here to figure out how it works.

https://code.visualstudio.com/docs/devcontainers/tutorial#_how-it-works

m Containers VDIU"‘IEE Give feedback =

oo
iy Images

Volumes Q Search

Dev Environments BETA

R Builds D Name
&

] cee

,_i‘ Docker Scout

D vscode

Visual Studio code provides the ability to map to this file.

Happy coding!

Development Environmen t

C++ Development

Environment (Docker)

Assignments

Assignments

Development Environment

Objective of this assignment is to ensure you are able to build and run your code.

Please reference this article.

Requirements:

1. visual Studio Code is setup
2. Docker Desktop is installed

3. Hello World application can be compiled and run

http://books.socialledge.com/books/c-programming/page/c-development-environment

Assignments

POSIX

See the following pages for POSIX

* https://en.kompf.de/cplus/posixlist.html
® https://pubs.opengroup.org/onlinepubs/9699919799/toc.htm

Choose two POSIX APIs (e.g., pthread create , mg open, fork) and write detailed explanations on
how they work, their parameters, return values, and typical use cases.

https://en.kompf.de/cplus/posixlist.html
https://pubs.opengroup.org/onlinepubs/9699919799/toc.htm

L ectures

Lectures

Introduction to C and C++

Simply put, C++ adds syntax sugar to make the code easier to write, and provides the benefits of
abstraction.

Lectures

Object Oriented Basics

Topics:

* Classes and objects
® Constructors and destructors
* |nheritance

Classes and Objects

Fundamentally, an object is a collect of data and methods that you can invoke on it. Let's create an
object in C, and define APIs on it:

typedef struct {
int age;

} person_s;

void person set age(person s* pointer, int age) {
pointer->age = age;

}

void c_usage() {
person_s person;
person set age(&person, 123);

person.age = 456; // C has no concept of private/public}

The C API has the following limitations:

®* struct members (ie: age), are "public”

® This means that anyone can access the members of person s

® You manually have to create a function whose first parameter is person_s *pointer such that this
function can modify the object in a mutable way

C++

In C++, the limitations are overcome, and the syntax becomes:

class person_class {

int m age;

public:
void set age(int age) {

m_age = age;

b i
void usage() {
person_class person;

person.set age(123);

// p.set age(123) really resolves to:
//person::set age(&person, 123);
// cannot access private

//person.m _age = 123;}

In a way, C++ just adds a little syntax sugar to achieve the following:

® Class has default visibility of private, hence m_age (as in member variable age) is private
* Public API doesn't need the mutable pointer passed in, it is automatic
© There is a hidden "this" pointer as a first parameter

Constructors

One of the severe limitations of C is that constructors are not automatic. Let's find out what that means:

class person_class {

int m age;

public:

// "default" constructor

person class() {
std::cout << "Constructor of person class has been called" << std::endl;
m age = 0;

}

void set age(int age) {
m_age = age;

1}

Default constructor is one you get for "free”, and you may not always need to define it, especially if the
default constructor has empty code. However, if you specify another constructor with different
parameters, default constructor is deleted.

class person class {

int m_age;

public:

// constructor

person class(int age) {
std::cout << "Constructor of person class has been called" << std::endl;
m_age = age;

}

void set age(int age) {
m_age = age;

1}

In the code above, this effectively yields this syntax:

class person_class {

int m_age;

public:

person class() = delete;

// constructor

person _class(int age) {

std::cout << "Constructor of person class has been called" << std::endl;

m_age = age;

1}

Destructors

Destructors are intuitively opposite of the constructors. Unlike a constructor when the function is
invoked when the object is built, the destructor is called when the object goes out of scope and is thus

destroyed.

class person_class {

int m age;

public:

~person_class() {

std::cout << "Destructor of person class has been called" << std::endl;

1}

Practical Example

class Vector {

private:

int* m array; // Pointer to dynamically allocated array

int m size; // Size of the vector
public:
// Constructor with size and default value
Vector(int size) {
m size = size;

m array = new int[size];

std::cout << "Vector constructor called. Size:

" << size << std::endl;

// Destructor
~Vector() {
delete[] m array;
std::cout << "Vector destructor called. Size: " << size << std::endl;

1}

Exercise 1

Let's put all the knowledge acquired so far towards an exercise. We will build a simpler version of the
std::vector, or simply an integer array.

// file: vector.hh
class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m_size; // Current size of the vector
public:
// Constructor with max size
Vector(int max size);

~Vector();

bool push back(int value);

int pop back();

int back();
int front();

int get size();

int get max size();

void clear();};

Self-test framework

Ideally, we would create a unit-test framework, but to keep things simple, we can use the assert() API to
provide a rudimentary unit-test framework.

#include <iostream>
#include <assert>
class Vector;

int main() {

Vector v(5);

assert(0 == v.get size());
assert(3 == v.get max size());

assert(0 == v.pop back());

assert(true == v.push back(123));
assert(l == v.get size());
assert(123 == v.pop back());

70 ooc

return 0;}

Copy Problem

There is a problem with our current design of the vector. The code below has an issue; please compile
and run the code and see what happens!

#include <iostream>
#include <assert>
class Vector;
int main() {
Vector v1(10);
// We want another vector with same properties as vl
// Problem: We did not allocate new memory but are now referring to vl's memory
Vector v2 = vl;

return 0;}

std::unique Pointer to the Rescue

After gaining advanced C++ experience, you will align to the fact that there should never be "naked
pointers" in C++. Pointers should always use more advanced pointers provided by the C++ 11 standard.
If we had built our vector like this, we would have caught the problem at compile-time rather than run-
time. Note that the code below is just a preview of what we will learn in the future, and this is not
required for the exercises as part of this article.

// file: vector.hh

#include <memory>

class Vector {
private:
std::unique ptr<int> m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
// Constructor with max size
Vector(int max size);

~Vector();

// ...}

Copy Constructor

The solution is that we need to "deep copy" the object which is called the copy constructor. Let's
implement the copy constructor and see how it will work.

class Vector {
// RULE: Whenever there is dynamic memory allocation (new operator)
// There shall always be a copy constructor to perform "deep copy"
Vector(const Vector& copy) {
m max _size = copy.m _max_size;

// do not :

//m_array pointer = copy.m _array pointer;

m_array pointer = new int[m max size]; // allocate your own memory, do not reference same memo

std::cout << "Vector COPY constructor is called for size " << m max size << std::endl;

// Deep copy
for(int i = 0; 1 < m max size; i++) {

m_array pointer[i] = copy.m array pointer[i];

// ...}

Rule of 3

The "Rule of Three" in C++ refers to a guideline for defining three specific member functions when a
class manages resources like dynamic memory (e.g., through pointers) to ensure proper behavior
regarding copying and destruction. The three key member functions are:

1. Destructor (~ClassName()):

® The destructor is responsible for releasing resources (like dynamic memory) held by an object
when it is destroyed.
® This is crucial to prevent memory leaks and properly clean up allocated resources.

2. Copy Constructor (ClassName(const ClassName& other)):

® The copy constructor creates a new object as a copy of an existing object.
* |t is used when an object is initialized from another object of the same type (e.g., during object

initialization, function parameter passing by value).

3. Copy Assignment Operator (ClassName& operator=(const ClassName& other)):

® The copy assignment operator defines how an existing object can be assigned the value of
another object of the same type.
* |t is invoked when you assign one object to another using the assignment operator = .

Sample Code for Rule of 3

class Vector {
int *m _memory for integers;
int m max size;
int m current size;
void deep copy(const Vector& source) {
// Deep copy: Copy each member from one vector to another
for (int i=0; i < m_current size; i++) {

m_memory for integers[i] = source.m memory for integers[i];

}
public:
// Fixed size vector that allocates memory once but cannot grow (by design)
Vector(int max_size) {
printf("Constructor is called to allocate %d integers\n", max size);
m_max_size = max_size;
m_memory for integers = new int[m max size]; // Allocate memory dynamically

}
// Rule of 3: If dynamic memory, then:

// - We must destructor
// - Copy consructor
// - Assignment operator

// 1: Destructor
~Vector() {
std::cout << ("Destructor is called") << std::endl;
delete [] m memory for integers;
}
#if 0 /* BUGGY CODE: */
// You get trivial copy constructor for free:
// But if you allocate dynamic memory, is this what you want? No!
Vector(const Vector& source) {
m_max_size = source.m max Size;
m _current size = source.m current size;
// BUGGY CODE:
m_memory for _integers = source.m memory for integers; // THIS IS THE PROBLEM
}
#endif

// 2: Copy constructor

Vector(const Vector& source) {
printf("Copy constructor called\n");
m_max_size = source.m max size;
m current size = source.m current size;
// THIS IS THE KEY: Allocate our own memory
// We do not wish to copy memory reference of another object literally
m memory for integers = new int[m max size];
deep_copy(source);

}

// 3: Assignment operator

Vector& operator=(const Vector& source) {

printf("Assignment Operator called\n");

m_max_size = source.m max Size;
m _current size = source.m current size;
m_memory for _integers = new int[m max size]; // THIS IS THE KEY
deep_copy(source);
return *this;
}
// Const APIs that do not modify the Vector instance
int get size() const { return m current size; }
int get max size() const { return m max size; }
void print memory location of integers() const {
printf("Memory allocated at\n");
for(int i = 0; 1 < m max _size; i++) {

printf(" [%d] = %p\n", 1, &n memory for integers[il]);

Exercise 2

Based on our learning so far, let us perform another exercise to create a string library.

#include <string.h>
#include <iostream>
// String library
class string {

char *m_string;

int m max length;

// Bonus points if you use unique pointer
// std::unique ptr<char> m _string;
public:
string(int max length) {
m_max_length = max length + 1; // +1 for NULL termination
m_string = new char[m_max_length];
}
// Rule of 3: Because we will allocate memory dynamically
~string() {
delete [] m string;
b
// Implement constructor to allocate as much memory as the c _string
string(const char *c string);
// Rule of 3: 2) Implement the copy constructor
string(const string& copy);
// Rule of 3: 3) Implmement the assignment operator

string& operator=(const string& source);

// Mutable API to make all characters lowercase or uppercase
void to upper();

void to lower();

// Adding more data to the string
void append char(char c); // Append a char but only if string has memory available

void append string(const char *c string); // Append another c string only if string has memory ava

// Non-mutable APIs to check certain properties of the string
bool equals to(const char *c_string);

bool contains(const char *c_string);

bool begins with(const char *c string);

int get length();

void print() { std::cout << "String is:

// Other mutable APIs
void clear();

void set(const char *string) {

'" << m string << "'" << std::endl; }

strncpy(m string, string, m _max length);

// All 3 lines do the same

m string[m max length - 1]

m string[m max length - 1]
//m _string[m max length - 1]
// We need the line(s) above
// "hello" -> 6 spaces

// [0] = h, [2]

[1] = e, L,

Copy Constructor

thing

I\OI;
0;
= NULL;

because in case strncpy() ran out of space, it won't null termina

I\OI;

The string class you built above has the same problem for the deep copy. Therefore, you will need to

create a copy constructor to be able to deep copy the string.

Pay close attention to this code:

class string {

// Rule of 3: 1) Functional destructor to deallocate dynamically allocated memory

~string() {
delete [] m_string;

e

// Rule of 3: 2) Implement the copy constructor

string(const string& copy);

// Rule of 3: 3) Implmement the assignment operator

string& operator=(const string& source);}

Header and Source File

<TODO: Template of header and source file>

Lectures

Operators

There are different types of operators in C++. More detail can be studied at this article.

Various Operators

1. Arithmetic

void arithmatic() {

int x = 0;
X =X+ 1;
X=X -1;
X =X * 2;
X =X/ 3;
X =X% 2;
X++;

Xi= =51k

Bitwise Operators

void bitwise() {

int x = 0;

X = X | 0b0001;
x = X & 0b0000;
0b000O1;

>

https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_arithmetic

void great example of xor operator() {
int a =

15
int b = 0;

// Check if a and b are exclusive from each other
if ((a==1&b==0) || (a==08&b==1)) {
J/ oo

// We can actually do this:
if (a xor b)

// or

if (a ~ b)}

2. Assignment

void assignment() {

int x = 0;

x =x + 3; // full form
// shortcut

w w w www w w

3. Comparison

void comparison() {

int x = 0;

inty = 1;

if (x ==y)
if (x I=vy)
if (x > vy)
if (x <y)
if (x >= y)
if (x <=y)}

4. Logical

void logical() {
int x = 0;

inty=1;

if (x ==1&& vy == 1)
if (x =1] y==1)
if (! (x==16&%y ==1))}

Operator Overloading

The operators would be boring if they were only applied to integers as demonstrated in the examples
above. We can actually inform the C++ compiler what operators should do for our classes. Let's reuse
the Vector of integers we built before and define some interesting operators.

// file: vector.hh
class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

https://en.cppreference.com/w/cpp/language/operator_logical

bool push back(int value);

int pop _back();

Vector operator+=(const Vector& other) const; // operator +=
Vector operator+(const Vector& other) const; // operator +
bool operator==(const Vector& other) const; // operator==

bool operator!=(const Vector& other) const; // operator!=

Vector operator*=(int multiply with); // * operator to multiply all integers by a number

//
b
// operator+ definition
Vector Vector::operator+=(const Vector& other) const {
// allocate memory that can hold data from both vectors

Vector result(this->m max size + other.m max size);

for (int 1 = 0; 1 < m size; ++1i) {
result.push back(m array[i]);

}

for (int 1 = 0; i < other.m size; ++i) {

result.push back(other.m array[i]);

return result;

}

Vector Vector::operator+(const Vector& other) const {
Vector result(*this);
result += other;
return result;

}

// operator== definition

bool Vector::operator==(const Vector& other) const {
const bool is equal = true;

if (m_size != other.m size) {

return !is equal;
}
for (int i = 0; i < m size; ++i) {
if (m_array[i] != other.m array[i]) {

return !is equal;

}
return is equal;
}
// operator!= definition
bool Vector::operator!=(const Vector& other) const {
return !(*this == other);
}
Vector operator*=(int multiply with) {
for (int 1 = 0; 1 < m size; ++i) {
m array[i] *= multiply with;
}

return *this;}

Here is how the operators may be used:

void vector plus operator example() {
puts("Let's practice strings");
Vector v1(6);
vl.push back(1l);
vl.push back(2);
vl.push back(3);
Vector v2(3);
vl.push back(4);
vl.push back(5);
vl.push back(6);
// Use our operator to add contents of two vectors
vl = vl + v2;
vl.print();
}

void vector multiply operator _example() {

Vector v1(6);

vl.push back(1l);

vl.push back(2);

vl.push back(3);

// Multiply operator in action
vl *= 5;

vl.print();}

Exercises

Vector library operators

Let's implement a few more operators for your vector library. Typically, the [1 operatoris
implemented such that it returns a reference to one of the elements of the vector, but in our case, we
will return a read-only value.

class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m_max_size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();
// First implement an "at()" API
// Return an element at a particular index

int at(int index);

// Secondly, implement the [] operator:

const int operator[](int index);}

String library operators

Implement the following string operators, and also write unit-test code in main.cpp to test that the code
you wrote actually functions correctly.

class string

{
std::unique ptr<char[]> m string;
int m max length;

public:

string(int max_length);

string(const char *c string);

// Adds two strings together

string operator+=(const string& other) const;

// "hello world" - "world" = "hello"

string operator-=(const string& other) const;

// "hello" * 2 = "hellohello"

string operator*=(int how many times) const;

// Implement shift operators to trim beginning or end of string

// 0b1101 >> 1 ==> 0b0110

// "hello" >>= 1 ==> "hell"

// "hello" >>= 3 ==> "he"

string operator>>=(int shift right by) const;

// similar to python for slice operation

string operator<<=(int shift right by) const;

// All comparison operators are applicable

// string s1("hello"); string s2("world")

// if (sl == s2)

// if (sl != s2)

bool operator!=(const string &compare with) const {
return !(*this == compare with);

}

bool operator==(const string &compare with) const {

// 1
bool
bool
bool
bool
bool
bool

// todo

return false;

mplement comparison operators
operator<=(const string &compare with) const;
operator>=(const string &compare with) const;
operator<(const string &compare with) const;
operator>(const string &compare with) const;
operator!=(const char* compare with) const;

operator==(const char* compare with) const;

Lectures

Templates

Templates and the need for header only code

In one of our previous lessons, we built our own "vector", but it was specifically designed to only hold
integers. But what if we wanted to store float , or char , or bool ? This can be accomplished by using

templates in C++.

Without a template

// file: vector.hh
class Vector {
private:
int* m_array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

bool push back(int value);

int pop back();

J ookt

With a template

// file: vector.hh
template <typename your type>

class Vector {

http://books.socialledge.com/books/c-programming/page/object-oriented-basics#bkmrk-inheritance-0

private:
your_type* m _array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

bool push back(your type value);
your type pop back();

I ookt

Here is how you would use the code and have the C++ compiler multiply your code for different types:

int usage() {
Vector<int> my int vector v2(1);
Vector<char> my char vector v2(1);

Vector<float> my float vector v2(1);}

Sample 1

When you design your header file, especially with a template, your code can be input right within the
class itself.

// file: vector.hh
template <typename your type>
class Vector {
private:
your type* m array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
// code for function can be right here

Vector(int max size) {

m _array = new int[max_size];
m max size = max size;

m size = 0;

void push back(your type value) {
if (m_size < m_max size) {
m array[m size] = value;

m size++;

A caolB

Sample 2

// file: vector.hh
template <typename your type>
class Vector {
private:
your type* m array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
// we can declare functions but "define" them below
// this improves code readability

Vector(int max_size);
void push back(your type value);

Y coa
}i
// We must use "scope" operator to define which class the function belongs to
Vector::Vector(int max _size) {

m array = new int[max_size];

m max size = max size;
m size = 0;
}
void Vector::push back(your type value) {
if (m_size < m _max size) {
m array[m size] = value;
m_size++;

}}

Source Code Organization

Template code in header file only

The way templates work is that for each type, such as vector<int> or vector<bool> , the entire
header file is copied and pasted by the compiler for the new type. Because of this reason, classes that
use templates must be in header file only. This means that you cannot have vector.hh and also
vector.cc because the entire code has to exist in the header file only.

Standard code

Standard code that doesn't use templates can be in file.hh and also file.cc and doesn't need to be
in a header. Although not that many libraries sometimes tend to be header only and the code split to
file.cc is for cosmetic reasons only.

// Header file:
// File: adder.hh
#pragma once
// Example of header file and source file
// Class should only declare functions, but not define them
class adder {
public:
int x;
int y;

// Only declare functions, do not "define" functions

int get sum();};

And then there should be a separate *.cc file or *.cpp file:

// File: adder.cc
#include "adder.hh"
int adder::get sum() {

return x + vy;

Lectures

STL Library

Before you read about the STL library, it is important to understand the Templates, so ensure that you
have covered that section before you start here.

Various Containers

There are different types of containers available in the STL library:

1. Sequence containers

array

An STL array is a fixed-size array, much like int array[5] . The difference is that the STL array is
more of a "first class citizen" in terms of providing APIs on this array which are iterators, and other
accessors such as size() , front() and back() .

#include <iostream>
#include <array>
int main() {
// Create and initialize an std::array with 5 integers
std::array<int, 5> numbers = {1, 2, 3, 4, 5};
// Accessing elements using operator[]
std::cout << "The first element is: " << numbers[0] << std::endl;
// Accessing elements using at() with bounds checking
try {
std::cout << "Element at index 4 is: " << numbers.at(4) << std::endl;

// This will throw an exception if the index is out of bounds

http://books.socialledge.com/books/c-programming/page/templates
https://en.cppreference.com/w/cpp/container
https://cplusplus.com/reference/array/array/

std::cout << "Element at index 5 is: " << numbers.at(5) << std::endl;
} catch (std::out of range& e) {
std::cerr << "Error: " << e.what() << std::endl;
}
// Iterating over elements using a range-based for loop
std::cout << "All elements: ";
for (int num : numbers) {
std::cout << num << " ";
}
std::cout << std::endl;

return 0;}

Further examples

#include <iostream>
#include <array>
#include <algorithm>
void c array() {
// Standard C int array doesn't offer any APIs
int int array[] = {1, 2, 3, 4, 5};
int array[5] = 123; /* Uncaught memory exception */
}
void cpp array access api() {
// Better thing to do this:
std::array<int, 5> cpp_int array{l, 2, 3, 4, 5};
// std::array offers some useful APIs
cpp_int array.at(0);
cpp_int array[l] = 22;
//cpp_int array[5] = 123; /* [] operator will not catch memory exception */
//cpp_int _array.at(5); /* C++ library catches memory exception */

cpp_int array.front() 11; // Same as index[0] or .at(0Q)

//cpp_int _array.end() 67890; // End is actually the first element out of bound

}
void cpp array iterate api() {

std::array<int, 5> cpp_int array{l, 2, 3, 4, 5};

// Let us iterate through each element of the array:
for (int element iterator : cpp_int array) {
std::cout << "Element value: " << element iterator << std::endl;
}
// The loop above is the same as the following:
for (auto it = cpp_int array.begin();
it < cpp_int _array.end(); /* end() is the first element address out of bound */
it++) { /* end() is thus an element address following the last element o

std::cout << "Element value using iterator: " << *it << std::endl;

}
void cpp_array other apis() {
std::array<int, 5> cpp_int array;
cpp_int array.fill(123);
for (int element iterator : cpp int array) {

std::cout << "Element value: " << element iterator << std::endl;

}

void cpp_array_powerful things about containers with iterators() {
std::array<int, 5> arr {10, 50, 4, -5, -100};
std::sort(arr.begin(), arr.end());
for (int element iterator : arr) {

std::cout << "Element value: " << element iterator << std::endl;

3}

Inconvenience of std::array

The usage of std::array becomes inconvenient when we have to pass it as parameters to a function
because not only your code has to account for the type in the template, but also the size. The problem
is that if and when we change the size of the array, then we have to change it in a number of places.

#include <iostream>

#include <array>

// Function that modifies the array elements
void modify array(std::array<int, 5>& arr) {

for (int& num : arr) {

num *= 2; // Double each element

}
// Function that prints the array elements (passed by const reference to prevent modification)
void print array(const std::array<int, 5>& arr) {
std::cout << "Array elements: ";
for (int num : arr) {
std::cout << num << " ";
}

std::cout << std::endl;

int main() {
// Create and initialize an std::array with 5 integers
std::array<int, 5> numbers = {1, 2, 3, 4, 5};
// Print the original array
print array(numbers);
// Modify the array elements
modify array(numbers);

return 0;}

We can improve the code above utilizing the "using" keyword, but functions still get bound to an array of
a fixed size, and functions are not reusable for other types of arrays.

#include <iostream>
#include <array>
// Array size is fixed, and we could use this statement to improve our code
using fixed size array = std::array<int, 3>;
// Function that modifies the array elements
void modify array(fixed size array& arr) {
for (int& num : arr) {

num *= 2; // Double each element

}
// Function that prints the array elements (passed by const reference to prevent modification)
void print array(const fixed size array& arr) {

std::cout << "Array elements: ";

for (int num : arr) {
std::cout << num << " ";
}
std::cout << std::endl;
}
void yet another problem with aliased type() {
std::array<int, 10> another array = { 1, 2, 3, 4, 5, };
/* This won't work because print array() is bound to array of 3 integers only */
print array(another array);
}
int main() {
// Create and initialize an std::array with 5 integers
fixed size array numbers = {1, 2, 3};
// Print the original array
print array(numbers);
// Modify the array elements
modify array(numbers);

return 0;

vector

A vector is a more flexible container than an std::array because it can dynamically grow (or shrink).
Let us practice a code snippet that uses various APIs that this class provides.

A vector is simply an array that can grow as needed. Try out the following code:

#include <iostream>
#include <vector>
int main() {
std::vector<int> v;
v.reserve(10);
for (int 1 = 0; 1 < 100; i++) {
std::vector<int>::iterator before = v.begin();

v.push back(i);

https://cplusplus.com/reference/vector/vector/

auto after = v.begin();
if (before !'= after) {

printf("Memory got re-allocated when we tried to insert element #%d\n", (i+l));

return 0;

Here are more examples of a vector with more APIs that it offers:

#include <iostream>
#include <vector>
int main() {
// Create a vector of integers
std::vector<int> vec;
// Check if the vector is initially empty
std::cout << "Initially, is vector empty? " << (vec.empty() ? "Yes" : "No") << std::endl;
// Add elements to the vector
vec.push back(10);
vec.push back(20);
vec.push back(30);
// Size and capacity after adding elements
std::cout << "Size after adding 3 elements: " << vec.size() << std::endl;
std::cout << "Capacity after adding 3 elements: " << vec.capacity() << std::endl;
// Print current elements in the vector
std::cout << "Current elements in vector: ";
for (int i : vec) {
std::cout << 1 << " ";
}
std::cout << std::endl;

return 0;}

A vector is definitely more powerful than std::array, and unlike the std::array, you can pass the vector to
functions more conveniently. Let us modify our earlier example to a vector and see the difference.

#include <iostream>

#include <vector>

// Function that modifies the array elements

void modify array(std::vector<int>& arr) {
for (int& num : arr) {

num *= 2; // Double each element

}

// Function that prints the array elements (passed by const reference to prevent modification)
void print array(const std::vector<int>& arr) {

std::cout << "Array elements: ";

for (int num : arr) {

std::cout << num <<

}

std::cout << std::endl;

int main() {
// Create and initialize an std::array with 5 integers
std::vector<int> numbers = {1, 2, 3, 4, 5};
// Print the original array
print array(numbers);
// Modify the array elements
modify array(numbers);

return 0;}

deque

Double Ended Queue is pronounced as "deck" (ue is missing in deque), and it works similar to a vector,
except that we can insert data at the beginning or at the end meaning that there is a push front() as
well as push back() . One key difference is that a <vector> maintains contiguous memory access to all
its elements. If we have a pointer to the first element, we can offset the pointer by N to get to the Nth
element. In other words, we have O(1) access to any of the element of the vector. Dequeue also has
O(1) access to any of its elements through a complex [] operator function, however, its data is in series
of chunks or blocks of contiguous memory, but not one large contiguous memory like a vector.

https://cplusplus.com/reference/deque/deque/

int main() {
std::vector<int> v;
v.push back(1l);
v.push back(2);
v.push back(3);

int *pointer to first element = v.data(); // data returns memory reference/pointer to first memory o

pointer to first element[0] = 11;
pointer to first element[1l] = 22;
pointer to first element[2] = 33;

for(size t 1 = 0; i < v.size(); i++) {
std::cout << "[" << 1 << "] = " << v[i] << std::endl;
}

return 0;}

The other key difference is insertion operation. When a vector runs out of memory, new memory is
allocated and data is copied to the new memory. However, a dequeue can not only grow in both
directions (front and back), but when the container runs out of memory, it can grow the memory without
incurring the full cost of memory allocation or copying data from old memory to new memory.

The following APIs are in addition to what a vector would provide:

* emplace_front()
* push_front()
® pop_front()

However, the following APIs are lacking because they are not needed based on the implementation of
the dequeue:

® capacity()
* reserve()

forward_list

https://cplusplus.com/reference/forward_list/forward_list/

Forward list is a singly linked list; it has "forward" links to its elements and only forward links and not
backward links of a <list> container. It's operation is actually very similar to the <list>, however, because
it is a singly linked-list, the "end()" iterator is lacking because one has to iterate through the beginning of
the list to reach the end of the list. Hence, you will find these APIs missing from this container:

* back()

* emplace_back()
® push_back()

® pop_back()

list

List is a doubly linked list. API wise, we have all the functionality of a vector, however because it is a
linked-list, the following APIs are lacking:

® operator]]
* at()

2. Associative containers

set and multiset

set is a container that is meant to hold sorted and unigue elements. For example, an array of unique
integers. It's job is to be able to hold your objects in a sorted manner.

multiset is very similar to a set with the exception that you can have duplicate members, such as
duplicate integers {1, 1, 2, 2, 3, 4}.

#include <iostream>

#include <set>

int main() {
// Create a set of integers
std::set<int> numbers;
// Insert elements

numbers.insert(10);

https://cplusplus.com/reference/list/list/
https://cplusplus.com/reference/set/set/
https://cplusplus.com/reference/set/multiset/

numbers.insert(40);
numbers.insert(30);
numbers.insert(20);
numbers.insert(10); // This will not be added again, as sets do not allow duplicates
// Print the elements of the set
std::cout << "Elements of the set: ";
for (int num : numbers) {
std::cout << num << " ";
}
std::cout << "\n";

return 0;}

Practical Example

#include <iostream>
#include <set>
#include <string>
class Book {
public:
std::string title;
std::string author;
Book(const std::string& title, const std::string& author)
: title(title), author(author), year(year) {}
// Define the operator '<' that will be used by the 'std::set' to
// insert elements in a sorted order
bool operator<(const Book& other) const {

return title < other.title;

b

int main() {
std::set<Book> library;
library.insert(Book("1984", "George Orwell"));
library.insert(Book("The Great Gatsby", "F. Scott Fitzgerald"));

// A duplicate entry will not be inserted:

library.insert(Book("1984", "George Orwell"));
std::cout << "Books in the library:\n";
for (const auto& book : library) {
std::cout << book.title << " by " << book.author << "\n";

}

return 0;}

map and multimap

map is a container that holds data mapped to a key. For example, a map of integers (key) mapped to a
string (value). Hence, it is essentially a key/value map. The keys must be unique that map to their
corresponding values.

#include <iostream>
#include <map>
#include <string>
class Book {
public:
std::string title;
std::string author;
Book(const std::string& title, const std::string& author)
: title(title), author(author) {}
// Unlike the previous example with std::set, we do not need < operator
// because the map is sorted by the "key" which in this case is the book title (std::string)
b
int main() {
std::map<std::string, Book> library;
// Insert books into the library; the key is the book title, and the value is the Book instance
library.insert(std::make pair("1984", Book("1984", "George Orwell")));
library.insert(std::make pair("The Great Gatsby", Book("The Great Gatsby", "F. Scott Fitzgerald"))

// Here are other ways to insert a "pair" (although since it is a map, duplicate entries won't be
library.insert({"1984", Book("1984", "George Orwell")});

library.insert(std::make pair("1984", Book("1984", "George Orwell")));
library.insert(std::pair<std::string, Book>("1984", Book("1984", "George Orwell")));

https://cplusplus.com/reference/map/map/
https://cplusplus.com/reference/map/multimap/

std::cout << "Books in the library:\n";
for (const auto& entry : library) {
const auto& book = entry.second;

std::cout << book.title << " by " << book.author << "\n";

}
return 0;
}
Exercise

Here is the code structure of a "Bookstore" class. Note that the inventory of books is a private member,
and we are exposing public APIs to be able to manage the Bookstore class.

#include <iostream>
#include <map>
#include <string>
class Bookstore {
private:
std::multimap<std::string, int> inventory;
public:
// Add or update books in the inventory
void add or update(const std::string& title, int quantity) {
inventory[title] += quantity; // Adds quantity to existing or initializes with quantity if no
}
// Remove a book from inventory
bool remove book(const std::string& title) {
auto it = inventory.find(title);
if (it != inventory.end()) {
inventory.erase(it);
return true;
}
return false;
}
// Check the stock of a specific book

bool is book present(const std::string& title) const {

auto it = inventory.find(title);
return (it != inventory.end());

}

// Print the current inventory

void print inventory() const {
std::cout << "Current Inventory:\n";
for (const auto& pair : inventory) {

std::cout << "Title: " << pair.first << ", Quantity: " << pair.second << "\n";

For this exercise, please build a menu system to complete the following code:

int main() {
Bookstore store;

int choice;

do {
std::cout << "\nBookstore Inventory Management:\n";
std::cout << "1. Add/Update Book\n";
std::cout << "2. Remove Book\n";
std::cout << "3. Print Inventory\n";
std::cout << "4. Check Stock\n";
std::cout << "5. Exit\n";
std::cout << "Enter choice: ";
std::cin >> choice;
switch (choice) {
case 1:
// Implement adding/updating a book
break;
case 2:
// Implement removing a book
break;
case 3:

store.print inventory();

break;

case 4:
// Implement checking stock
break;

case 5:
std::cout << "Exiting...\n";
break;

default:

std::cout << "Invalid choice. Please try again.\n";

}
} while (choice '= 5);
return 0;}

3. Unordered associative containers

The unordered associative containers are very similar to ordered ones; here are the differences:

* Ordered containers store data in sorted order
® Unordered containers store data using hash memory

Pseudo implementation of hash

#include <iostream>
#include <memory>
#include <string>
template <typename type>
class unordered set {
const size t bucket size = 100;
std::unique ptr<type> elements[100];
public:
void insert(const type& key) {
const auto hashed value = std::hash<type>{}(key);
const auto mapped index = hashed value % bucket size;
std::cout << "Hashed value: " << hashed value << std::endl;

std::cout << "Mapped index: " << mapped index << std::endl;

// This mapped index is empty, hence add the element here

if (elements[mapped index] == nullptr) {
std::cout << "Adding a new element to the set: " << key << std::endl;
elements[mapped index] = std::make unique<type>(key);

}

// There is an existing key mapped already

else {

std::cout << "Mapped index (" << key << ") already exists" << std::endl;

// Is there an existing key already?
if (*elements[mapped index] == key) {
std::cout << "Duplicate element, will not add it" << std::endl;
}
else {
std::cout << *elements[mapped index] << " and "
<< key <<

" share the same mapped memory" << std::endl;

// TODO: Handle this case

}

b

void line() { std::cout << "------------ " << std::endl; }

void test string() {
unordered set<std::string> set;
set.insert("hello"); line();
set.insert("world"); line();
set.insert("world"); line();

}

void test int() {
unordered set<int> set;
set.insert(123); line();
set.insert(456); line();
set.insert(456); line();
set.insert(223); line();

int main(int argc, char **argv) {
std::cout << "Hello world!" << std::endl;
test string();
test int();

return 0;

The code above doesn't handle the case when we have "collisions”. The collisions occur when there
aren't enough buckets or containers or when multiple items by chance happen to map to the same
memory. In this case, we have to change our unique pointer of elements to a vector of elements.

#include <iostream>
#include <vector>
#include <algorithm>
template <typename type>
class unordered set {
const size t bucket size = 100;
// When "collisions" occur, we need to be able to store more than one element at the "mapped memory"
// Therefore, let us change the single element storage to multiple element storage
// std::unique ptr<type> elements[100];
std::vector<type> elements[100];
public:
void insert(const type& key) {
const auto hashed value = std::hash<type>{}(key);
const auto mapped index = hashed value % bucket size;
std::cout << "Hashed value: " << hashed value << std::endl;

std::cout << "Mapped index: << mapped index << std::endl;

// This mapped index is empty, hence add the element here

auto& mapped container = elements[mapped index];

if (mapped container.size() == 0) {
std::cout << "Adding a new element to the set: " << key << std::endl;
mapped container.push back(key);

}

// There is an existing key mapped already

else {

std::cout << "Mapped entry (" << key << ") already exists" << std::endl;

// Is there an existing key already?
const auto& found entry = std::find(mapped container.begin(), mapped container.end(), key);
if (found entry != mapped container.end()) {
std::cout << "Duplicate entry, will not add it" << std::endl;
}
else {
std::cout << key << "has to share the same mapped memory" << std::endl;

mapped container.push back(key);

}

I

void line() { std::cout << "------------ " << std::endl; }

void test string() {
unordered set<std::string> set;
set.insert("hello"); line();
set.insert("world"); line();
set.insert("world"); line();

}

void test int() {
unordered set<int> set;
set.insert(123); line();
set.insert(456); line();
set.insert(456); line();
set.insert(223); line();

}

int main(int argc, char **argv) {
test string();
test int();

return 0;

Now that you have a deeper understanding of hashing and memory storage (STL calls it "buckets"),
please try the following program and make sense out of the output.

#include <iostream>

#include <vector>
#include <algorithm>
#include <unordered set>
void test int() {
std::unordered multiset<int> set;
set.insert(123);
set.insert(456);
set.insert(456); // duplicate
for(int i = 0; i < 30; i++) {
set.insert(i);
std::cout << "bucket count << set.bucket count() << std::endl;
std::cout << "max bucket count : " << set.max bucket count() << std::endl;
std::cout << "bucket size of 123: " << set.bucket size(123) << std::endl;
std::cout << "bucket size of 456: " << set.bucket size(123) << std::endl;
std::cout << "bucket of 123 i " << set.bucket(123) << std::endl;
std::cout << "bucket of 456 i " << set.bucket(456) << std::endl;
std::cout << "load factor << set.load factor() << std::endl;
std::cout << "max load factor : " << set.max load factor() << std::endl;
}
int main(int argc, char **argv) {
test int();

return 0;}

Exercise
Please extend the unordered_set class by adding a new method that would print all elements in the set:

® void unordered set::print all elements()

Note that some containers may be empty vectors, and you would have to go through each container
and print the data if the container is not empty.

unordered_set and unordered_multiset

Similar to std::set and std::multiset , these containers provide the ability to store unique elements
for std::unordered set and possibly duplicate elements also using the std::unordered multiset . In

https://cplusplus.com/reference/unordered_set/unordered_set/
https://cplusplus.com/reference/unordered_set/unordered_multiset/

fact, the same example from our previous section would work if we merely change the container type.

One key difference would be that when the std::set is iterated for each element, it would print the
elements in a sorted order. That is because fundamentally the data is stored in a sorted data structure
inside. The "unordered" as its name implies stores data in a bit arbitrary way and elements are not
sorted. Therefore, the data is iterated in a random order.

#include <iostream>
//#include <set>

#include <unordered set>

int main() {

// Create a set of integers
//std::set<int> numbers;
std::unordered set<int> numbers;
// Insert elements
numbers.insert(10);
numbers.insert(40);
numbers.insert(30);
numbers.insert(20);
numbers.insert(10); // This will not be added again, as sets do not allow duplicates
// Print the elements of the set
std::cout << "Elements of the set: ";
for (int num : numbers) {

std::cout << num << " ";
¥
std::cout << "\n";

return 0;}

unordered_map and unordered _multimap

The "map"” version of the unordered container is obviously a map, and not just a collection of keys. For
the std::unordered map , there is a unique key and only one mapped value to the key. The multimap
version offers the ability to store multiple values mapped to a single key.

https://cplusplus.com/reference/unordered_map/unordered_map/
https://cplusplus.com/reference/unordered_map/unordered_multimap/

Let us modify our code to enable it for key/value type.

#include <iostream>
#include <vector>
#include <algorithm>
template <typename KeyType, typename ValueType>
class unordered map {
const size t bucket size = 100;
// Use a vector of vector of pairs to handle collisions and store key-value pairs.
std::vector<std: :pair<KeyType, ValueType>> elements[100];
public:
void insert(const KeyType& key, const ValueType& value) {
const auto hashed value = std::hash<KeyType>{}(key);
const auto mapped index = hashed value % bucket size;
std::cout << "Hashed value: " << hashed value << std::endl;
std::cout << "Mapped index: " << mapped index << std::endl;
auto& mapped container = elements[mapped index];
bool key exists = false;
// The key maps to this container, but multiple keys could be stored here due to collisions
// Hence, search the container to check if our key exists
for (auto& elem : mapped container) {
if (elem.first == key) {
// Key exists, update value
std::cout << "Key (" << key << ") exists, updating value to " << value << std::endl;
elem.second = value;
key exists = true;

break;

¥
if ('key exists) {
// Key does not exist, add new key-value pair
std::cout << "Adding new key-value pair to the map: " << key << ": " << value << std::endl;

mapped_container.emplace back(key, value);

void line() { std::cout << "------------ " << std::endl; }

void test string() {
unordered map<std::string, int> map;
map.insert("hello", 1); line();
map.insert("world", 2); line();
map.insert("world", 3); line();

}

void test int() {
unordered map<int, std::string> map;
map.insert (123, "abc"); line();
map.insert (456, "def"); line();
map.insert (456, "ghi"); line();
map.insert (223, "xyz"); line();

}

int main(int argc, char **argv) {
test string();
test int();

return 0;

Lectures

Algorithms Library

Algorithms library

Other Content

Streams

https://en.cppreference.com/w/cpp/algorithm
https://en.cppreference.com/w/cpp/io#Stream-based_I.2FO

Lectures

Object Oriented Advanced

Basics

Syntax of Inheritance

#include <iostream>
using namespace std;
// Base class (Parent class)
class Base {
public:
void parent class function() {

cout << "This is the base class method." << endl;

b
// Derived class (Child class) that inherits from the Base class publically
class Derived : public Base {
public:
void child class function() {

cout << "This is the derived class method." << endl;

I

// Derived -> Base

int main() {
Derived derived obj;
// Calling method from the base class
derived obj.parent class function();
// Calling method from the derived class
derived obj.child class function();

return 0;}

Advanced: Adapter pattern

We can get a little creative with the inheritance syntax and deploy an "Adapter pattern:

#include <iostream>
#include <string>

using namespace std;

// Existing class (Adaptee)
class LegacyMediaPlayer {
public:

void play mp3(const string& filename) {

cout << "Playing MP3 file: " << filename << endl;

b
// Target interface
class AdvancedMediaPlayer {
public:
void play mp4(const string& filename) {
cout << "This player does not support MP4 files." << endl;
}
void play vlc(const string& filename) {

cout << "This player does not support VLC files." << endl;

}i
// Adapter class using private inheritance
class MediaPlayerAdapter : private LegacyMediaPlayer, public AdvancedMediaPlayer {
public:
void play mp4(const string& filename) {
// For simplicity, convert MP4 to MP3 (dummy implementation)
cout << "Converting MP4 to MP3..." << endl;
LegacyMediaPlayer: :play mp3(filename + ".converted.mp3");
}
void play vlc(const string& filename) {
// For simplicity, convert VLC to MP3 (dummy implementation)
cout << "Converting VLC to MP3..." << endl;

LegacyMediaPlayer: :play mp3(filename + ".converted.mp3");

b

// Client code

int main() {
MediaPlayerAdapter player;
player.play mp4("example.mp4");
player.play vlc("example.vlc");

return 0;

Basic Inheritance pattern

Let us learn by studying an example.

#include <iostream>
#include <string>
using namespace std;
class Vehicle {
// protected says that inheriting class will have access to these members
// but users of the class will not
protected:
string brand;
int year;
void protected method() { std::cout << "protected method" << std::endl; }
public:
Vehicle(string b, int y) : brand(b), year(y) {}
virtual void display info() {

cout << "Brand: " << brand << ", Year: " << year << endl;

b
void example() {
Vehicle v("name", 2020);
//v.brand = "123"; // Can't do because brand is private, only inheriting child class can access it

//v.protected method(); // Can't do this because this method is not public

}
class Car : public Vehicle {
private:
int doors;
public:

Car(string b, int y, int d) : Vehicle(b, y), doors(d) {}

void display info() override {

cout << "Car - Brand: " << Vehicle::brand <<
", Year: " << Vehicle::year <<
", Doors: " << doors << endl;

I

class Motorcycle : public Vehicle {

private:
string type;

public:
Motorcycle(string b, int y, string t) : Vehicle(b, y), type(t) {}
void display info() override {

cout << "Motorcycle - Brand: " << brand << ", Year: " << year << ", Type: " << type << endl;

b
int main() {
Car car("Toyota", 2020, 4);
Motorcycle motorcycle("Yamaha", 2019, "Sport");
car.display info();
motorcycle.display info();

return 0;

Abstract classes

Override

A base class can define method(s) that could have override behavior:

class Animal {
public:
virtual void speak() {

std::cout << "Some generic animal sound" << endl;

b
class another animal : public Animal {
public:
void speak() { /* Intent is to override the base, parent class */
std::cout << "I speak differently" << std::endl;
I3

One question to ask in the code snippet above is that what happens if the base class changes its
method name? In this case, the intent was for another animal to override, but it no longer overrides
anything. This is the reason the override keyword was invented.

class Animal {
public:
//virutal void speak() { /* Case changes: */
virtual void Speak() {

std::cout << "Some generic animal sound" << endl;

b
class another animal : public Animal {
public:
void speak() { /* This overrides the base class function */
std::cout << "I speak differently" << std::endl;
I3

Let us use C++11 syntax to use the override keyword and see what happens when a method is
intending to override a function but it doesn't do so:

class Animal {

public:

//virutal void speak() { /* Case changes: */
virtual void Speak() {

std::cout << "Some generic animal sound" << endl;

b
class another animal : public Animal {
public:
void speak() override { /* This overrides the base class function */
std::cout << "I speak differently" << std::endl;
b

Pure Virtual

A base class can provide default functionality or mandate that the child class inheriting the base
(parent) class has to provide a certain functionality. It would look like this:

class Animal {
public:
virtual void speak() = 0; /* I do not know how to speak, someone else tell me how */
b
class dolphin : public Animal {
public:
void speak() override {
std::cout << "I am a dolphin and I can whistle" << std::endl;

1}

Example 1

#include <iostream>
using namespace std;
class Animal {
public:
virtual void speak() = 0;

s

class Dog : public Animal {
public:
void speak() override { // Overriding the base class function

cout << "Woof!" << endl;

g
class Cat : public Animal {
public:
void speak() override { // Overriding the base class function

cout << "Meow!" << endl;

T
void speak(Animal& animal) {

animal.speak();

Example 2

#include <iostream>
#include <vector>
class Shape {
public:
// Virtual function to be overridden by derived classes
virtual void draw() const {
std::cout << "Drawing a shape\n";
}
// Virtual destructor to ensure proper cleanup of derived objects
virtual ~Shape() {}
b
class Circle : public Shape {
public:
void draw() const override {

std::cout << "Drawing a circle\n";

class Rectangle : public Shape {
public:
void draw() const override {

std::cout << "Drawing a rectangle\n";

I
int main() {
// Create a vector of Shape pointers
std::vector<Shape*> shapes;
// Add different shapes to the vector
shapes.push _back(new Circle());
shapes.push _back(new Rectangle());
shapes.push back(new Circle());
// Iterate through the vector and call the draw method
for (const auto& shape : shapes) {
shape->draw(); // Polymorphic call
}
// Clean up the allocated memory
for (auto& shape : shapes) {
delete shape;
}

return 0;}

Video Game Example

#include <iostream>
#include <vector>
#include <memory>
// Base class
class Character {
public:

virtual void attack() const {

std::cout << "Character attacks in a generic way.\n";

}

virtual ~Character() {}

e

// Derived class: Warrior

class Warrior : public Character {

public:

iE;

void attack() const override {

std::cout << "Warrior swings a sword!\n";

// Derived class: Mage

class Mage : public Character {

public:

g

void attack() const override {

std::cout << "Mage casts a fireball!\n";

// Derived class: Archer

class Archer : public Character {

public:

i

void attack() const override {

std::cout << "Archer shoots an arrow!\n";

int main() {

// Create a vector of unique ptr to Character

std::vector<std::unique ptr<Character>> characters;

// Add different types of characters to the vector

characters.push back(std::make unique<Warrior>());

characters.push back(std::make unique<Mage>());

characters.push back(std::make unique<Archer>());

// Iterate through the vector and call the attack method

for (const auto& character : characters) {
character->attack(); // Polymorphic call

}

// No need to delete characters; unique ptr handles it automatically

return 0;

Interfaces

An interface abstracts the implementation and enables unit-testing on the code. In other words, an
interface is an abstract class that decouples the implementation from the interface, which allows
changing or adding new implementations without affecting the rest of the program.

Polymorphism: The code below demonstrates polymorphism through the use of the interface. The
test communication function can take any object that implements the Communicable interface,
showcasing how polymorphism enables the writing of more flexible and reusable code.

Example 1

In the example below, the interface ensures that any class that implements it will have a send method,
but does not commit to how the sending is done, which is polymorphic.

#include <iostream>

// Interface class with a single responsibility

class Communicable {

public:
virtual void send(const std::string& message) = 0; // Only one pure virtual function
virtual ~Communicable() {} // Virtual destructor for proper cleanup

b

class WiFiDevice : public Communicable {

public:
void send(const std::string& message) override {

std::cout << "Sending over WiFi: " << message << std::endl;

g
class BluetoothDevice : public Communicable {
public:

void send(const std::string& message) override {

std::cout << "Sending over Bluetooth: " << message << std::endl;

g
void test communication(Communicable& device, const std::string& message) {

device.send(message); // Use the send method to demonstrate communication

}
int main() {

WiFiDevice wifi;

BluetoothDevice bluetooth;

testCommunication(wifi,

testCommunication(bluetooth,

return 0;

Example 2

#include <iostream>
#include <vector>
#include <memory>

// Interface class
class GameCharacter {
public:

virtual void attack()

virtual void defend() =

virtual void heal() = 0;

"Hello WiFi World");

// Pure
// Pure
// Pure

virtual int get health() const = 0; // Pure

virtual ~GameCharacter() {}

i

void perform _action(GameCharacter& character) {

if (character.get health() < 30) {

character.heal();

} else if (rand() % 2 ==

character.attack();
} else {

character.defend();

Exercise

) { // 50% chance

"Hello Bluetooth World");

virtual function
virtual function
virtual function

virtual function to get health

to attack or defend

Let us continue working on the examples below and practice more uses of interfaces.

1. Create an interface that returns low threshold level for health

2. Create an interface that returns when a character should attack

3. Write two classes that inherit and implement the GameCharacter class
4. Write a main function to invoke perform action() on the two classes

Lectures

Smart Pointers

C++ 11 standard solved a major safety problem with the language: Managing memory

® Creating memory
® Deleting memory
®* Managing who owns memory and how many owners are there?

Example

Problematic code

Memory becomes difficult to manage when you give the pointers or references away. Here is an
example.

// Interface for an internet socket API

class socket i {

public:
virtual void send() = 0;
virtual void recv() = 0;

virtual ~socket i() {}
b
// Child class that implements an interface
class socket : public socket i {
public:
void send() override {

}

void recv() override {

}

// An HTTP library that uses a socket interface to communicate
class http {
public:
http(socket i *sock) : m socket(sock) {
}
private:
socket i *m_socket;
I
// Multiple problems with this code
http* create http() {
socket s;
http http obj(&s);
return http obj;
}
int main(void) {

http* http obj = create http();}

One of the problems can be simplified to this:

int* get() {
int x;
return &x;
}
void problem() {
int* pointer = get();

*pointer = 123;}

Fixed Version 1

The partially corrected version creates a new memory reference, and it leaves it up to the consumer of
the code to actually delete the object. This is just one of the issues: memory management problem.
Because you are relying on the user of the code to delete your memory, it creates traps in your code.

// Let us partially fix our code
http* create http() {

socket s;
// Let us create new memory which will not go out of scope
// even when this function exits
// BUT:
// We have now created memory management problem:
// ie:
// - Who deletes this memory?
// - When do they do it?
// - Can you ensure that they delete it?
http * http obj = new http(&s);
return http obj;
}
int main(void) {

http* http obj = create http();

// We better delete our object or else it is memory leak

delete http obj;}

std::unique_ptr

Let us introduce the concept of using a unique pointer such that we do not have to worry about deleting
it.

// Let us partially fix our code
std::unique ptr<http> create http() {
socket s;

std: :make unique<http>(&s);

std::unique ptr<http> http obj
return http obj;
}

int main(void) {

std::unique ptr<http> http obj create http();
// No need to worry about deleting our allocated resource

//delete http obj}

The unique_ptr is also special because it will force you to maintain "one owner".

std::shared_ptr

If we continue in our example, we will notice that there is still a fundamental flaw which is that the
socket that was created would go out of scope, and the http class would then end up using a reference
to memory that no longer is alive (no longer in scope).

// Interface for an internet socket API

class socket i {

public:
virtual void send() = 0;
virtual void recv() = 0;

virtual ~socket i() {}
b
// Child class that implements an interface
class socket : public socket i {
public:
void send() override {

}

void recv() override {
}
}i
// An HTTP library that uses a socket interface to communicate
class http {
public:
http(std::shared ptr<socket i> sock) : m_socket(sock) {
¥
private:

std::shared ptr<socket i> m socket;

iE

Cleaned up code

#include <iostream>
#include <memory>
// Interface for an internet socket API
class socket i {
public:
virtual bool open(const std::string& hostname) = 0;
virtual void send(const std::string& data to transit) = 0;
virtual std::string recv() = 0;
virtual ~socket i() {}
b
// An HTTP library that uses a socket interface to communicate
class http {
public:
http(std::shared ptr<socket i> sock) : m socket(sock) {
}
~http() {
std::cout << "Destructor of http class has been called" << std::endl;
}
void send request(const std::string& host, const std::string& resource) {
std::string request = "GET " + resource + " HTTP/1.1\r\n";
request += "Host: " + host + "\r\n";
request += "Connection: close\r\n\r\n";
m_socket->send(request);
std::string response = m_socket->recv();
std::cout << "Response:\n" << response << std::endl;
}
private:
std::shared ptr<socket i> m socket;
b
class linux_socket : public socket i {
public:
bool open(const std::string& hostname) override {
return false;
}
void send(const std::string& data to transit) override {

}

i

std::string recv() override {

return std::string{};

// Let us partially fix our code

std::unique ptr<http> create http() {

}

auto socket = std::make shared<linux socket>();
// References to the shared pointer:

std::cout << "reference count before: << socket.use count() << std::endl;
// Let us create new memory which will not go out of scope

// even when this function exits

// BUT:

// We have now created memory management problem:

// ie:

// - Who deletes this memory?

// - When do they do it?

// - Can you ensure that they delete it?

std::unique ptr<http> http obj = std::make unique<http>(socket);

std::cout << "reference count after: " << socket.use count() << std::endl;

return http obj;

int main(void) {

auto http obj = create http();

// This uses "socket" which was created at the first line inside create http()
http obj->send request('google.com", "index.html");

// We better delete our object or else it is memory leak

//delete http obj;

std::cout << "End of main()" << std::endl;}

Lectures

Function Pointers & Lambdas

Function pointers are essential in C and C++ programming.

Function Pointers in C

#include <stdio.h>
// Function prototypes for the operations
int add(int a, int b) {
return a + b;
}
int subtract(int a, int b) {

return a - b;

int main() {
// Define function pointers for the operations
int (*operation)(int, int);
int x = 10;
inty =5;
int result;
// Use the function pointer to point to the add function
operation = add;
result = operation(x, y);
printf("Adding: %d + %d = %d\n", x, y, result);
// Change the function pointer to point to the subtract function
operation = subtract;
result = operation(x, y);
printf("Subtracting: %d - %d = %d\n", x, y, result);

return 0;}

We can make the code more intuitive by using a "typedef".

#include <stdio.h>

// Function prototypes for the operations

int

int

}

add(int a, int b) {

return a + b;

subtract(int a, int b) {

return a - b;

// Using typedef to simplify function pointer declarations

typedef int (*function_pointer for operation)(int, int);

int

main() {

// Declare a function pointer using the typedef
function pointer for operation operation;

int x = 10;

int y = 5;

int result;

// Use the function pointer to point to the add function
operation = add;

result = operation(x, y);

printf("Adding: %d + %d = %d\n", x, y, result);

// Change the function pointer to point to the subtract function
operation = subtract;

result = operation(x, y);

printf("Subtracting: %d - %d = %d\n", x, y, result);

return 0;

Function Pointers in C++

#include <iostream>

#include <functional>

// Function prototypes for the operations

int add(int a, int b) {

return a + b;

int subtract(int a, int b) {

return a - b;

int main() {
// Using std::function to declare function pointers
std::function<int(int, int)> operation;
int x = 10;
int y = 5;
int result;
// Assign the add function to the operation std::function
operation = add;
result = operation(x, y);
std::cout << "Adding: " << x << " 4+ " <<y << " =" << result << std::endl;
// Change the operation to subtract
operation = subtract;
result = operation(x, y);
std::cout << "Subtracting: " << x << " - " <<y << " =" << result << std::endl;

return 0;

Similar to C, we can improve our code by using a typedef:

#include <iostream>

#include <functional>

// Define the function type using typedef for clarity and reusability
typedef std::function<int(int, int)> MathOperation;

// Function prototypes for the operations

int add(int a, int b) {

return a + b;

int subtract(int a, int b) {

return a - b;

int main() {

// Declare a variable of type MathOperation
MathOperation operation;

10;

int x
inty =5;

int result;

// Assign the add function to the operation

operation = add;

result = operation(x, y);

std::cout << "Adding: " << x << " + " <<y << " =" << result << std::endl;

// Change the operation to subtract

operation = subtract;

result = operation(x, y);

std::cout << "Subtracting: " << x << " - " <<y << " =" << result << std::endl;

return 0;

Example 1

#include <iostream>
#include <vector>
#include <algorithm>
// Comparison functions:
bool ascending compare(int a, int b) {
return a < b; // Change this to a > b for descending order
}
bool descending compare(int a, int b) {
return a > b; // Change this to a > b for descending order
}
int main() {
// Create a vector of integers
std::vector<int> vec = {-8, 5, 2, 9, 1, 5, 6, 3};
// Sort the vector using the comparison function
std::sort(vec.begin(), vec.end(), descending compare);
// Print the sorted vector

std::cout << "Sorted vector: ";

for (int value : vec) {
std::cout << value << " ";

}

std::cout << std::endl;

return 0;}

Example 2

#include <iostream>
#include <chrono>
#include <functional>
#include <thread>
class Timer {
public:
void callback after delay(std::function<void()> callback, int delay) {
std::this thread::sleep for(std::chrono::milliseconds(delay));

callback();

b
void function to callback() {
std::cout << "Callback invoked!" << std::endl;
}
int main() {
Timer t;
t.callback after delay(function to callback, 3000);

return 0;}

Lambda

Before we learn what is a lambda, let us consider naive code that achieves similar functionality of a
lambda but it uses function pointer:

#include <algorithm>

#include <iostream>

#include <vector>
// A simple comparison function
bool compare(int a, int b) {
return a < b;
}
int main() {
std::vector<int> data = {5, 3, 9, 1, 6};
// Sort using a function pointer
std::sort(data.begin(), data.end(), compare);
for (int n : data) {
std::cout << n << " ";
}
std::cout << std::endl;

return 0;

In super naive terms, a lambda is a function pointer. Just remember this syntax: [1 () {}

#include <algorithm>
#include <iostream>
#include <vector>
int main() {
std::vector<int> data = {5, 3, 9, 1, 6};
// Sort using a lambda expression
auto compare function lambda = [](int a, int b) {return a < b; };
std::sort(data.begin(), data.end(), compare function lambda);
for (int n : data) {
std::cout << n << " ";
}
std::cout << std::endl;

return 0;

Lectures

Threading Library

Basics

® What is multithreading?
* Why multithreading?

Overview of C+ thread library

Let us start with an easy example:

#include <iostream>
#include <thread>
void helloFunction() {
std::this thread::sleep for(std::chrono::milliseconds(rand() % 1000));

std::cout << "Hello from a thread!'\n";

int main() {
std::thread tl(helloFunction);
std::thread t2(helloFunction);

std::cout << "We have launched two threads to operate in parallel!" << std::endl;
tl.join(); // Wait for the thread to finish

t2.join();

return 0;

