
Class Structure

C++ Development Environment

Assignments

Development Environment

POSIX

Lectures

Introduction to C and C++

Object Oriented Basics

Operators

Templates

STL Library

C++ Programming

This is a foundation course on learning modern C++ language (C++ 11 and beyond).

This course covers object-oriented programming using modern C++. Because most automation,

embedded applications, gaming, and many large data processing applications are written in C++, it is

essential that software developers understand and master it. Hardware engineers are increasingly

using C++ and OOP in system verification tasks, and as of the current decade, there has been a

noticeable shift from C to C++ on microcontroller systems.

This course offers an excellent foundation in developing optimized modern C++ applications. The

participants will learn to write faster and modular code, and the debugging techniques, for real-world

applications. There will be assignments and exercises to accompany the lectures.

Learning Outcomes

At the conclusion of the course, you should be able to:

Modern C++ (post C++11)

Apply object oriented concepts to software development problems using modern C++

Understand and use the basic programming constructs of C++

Manipulate various C++ data types, such as arrays, strings, and pointers

Write C++ code using principles of object-oriented programming

Understand design patterns in C++ using singleton pattern

Manage memory appropriately, including proper allocation/deallocation procedures using unique and

smart pointers

Best practices (dos and don'ts)

Utilize best practices from C++ GSL or Google Abseil libraries

Setup development environment

Class Structure

Description

1. Introduction

Basics of Docker and container management

Review class structure

Operating System Fundamentals: Linux, Mac, POSIX, RTOS

Modern approach to "manpages"

tldr

chatgpt

SSH and password-less login

System Monitoring: top , df

Homework: Operating Systems and POSIX

Basics

Types, strings

Control structures

Declare and define functions

Call by value, reference, pointer

Overloading

Default parameters

Classes and objects

Constructors and destructors

Inheritance

Operators (=, [], *, -> etc.)

Various containers

Iterators

Streams

Chrono

Templates and the need for header only code

2. Basic Syntax & Functions

3. Object Oriented Basics

4. Operators, STL library & Templates

https://docker-curriculum.com/
https://tldr.sh/
https://chat.openai.com/
http://books.socialledge.com/books/c-programming/page/object-oriented-basics
http://books.socialledge.com/books/c-programming/page/operators-stl-library

Review Questions

Feedback

Exam

Abstract classes

Virtual and pure virtual functions

Virtual destructors

Polymorphism

Unique pointer

Shared pointer

Weak pointer

Concurrency

Threads

Mutexes

Condition Variables

Deadlock Empire

Libraries

Boost

Guideline support library (GSL)

Abseil

5. Midterm

6. Object Oriented Advanced

7. Smart Pointers

8. More Advanced Topics

9. Powerful Libraries

Design patterns

Singleton

Review Questions

Collect Feedback

Exam

10. Final Examination

This article provides more direct instructions to compile C++ code. More elaborate information can be

read at this Visual Studio Code page which is a highly recommended read for knowledge sake.

The first thing is to download Docker; please visit https://www.docker.com/products/docker-desktop/ to

download Docker for your machine.

After you start the Docker Desktop, you should land on a screen like the following. Feel free to poke

around and learn Dockers.

C++ Development

Environment

Setup Docker

Install and Start Docker

https://code.visualstudio.com/docs/devcontainers/containers
https://www.docker.com/products/docker-desktop/

We will use Visual Studio Code as an IDE. There has been tremendous amount of support and plugins

to serve as a really good code editor. And more importantly for us, it provides docker container for C++

development out-of-the-box.

Please go to https://code.visualstudio.com/ to install Visual Studio Code for your machine. After

installation, go ahead and fire up the program.

After installing and starting up Visual Studio Code, it is time to install a "devcontainers" extension to be

able to fire up your C++ development environment.

Much of the documentation is captured here a the devcontainers reference page. But, we will provide

brief details to get you going.

Go to "Extensions", search for "dev containers" and install it. You can also read this page for more

elaborate information.

Setup Visual Studio Code

Install Visual Studio Code

Install Dev Containers

https://code.visualstudio.com/
https://code.visualstudio.com/docs/devcontainers/containers
https://code.visualstudio.com/docs/devcontainers/tutorial
https://code.visualstudio.com/docs/devcontainers/tutorial

After the Dev Container extension is installed, it is now time to start the C++ container. Click on the

green arrows on the bottom left side of Visual Studio Code.

This will bring up a menu, select New Dev Container .

Setup Dev Container

Type "C++", and select the C++ container:

Grab a cup of coffee because building and starting this "Dev Container" will take a while. Click on "show

log" to view details.

Let's ensure that everything is running as expected. If you go back to Docker Desktop, you should see a

container running.

Checkpoint

Visual Studio code attaches to this container and you should be able to add code and compile it at this

point.

From the left-side of Visual Studio Code, create a new folder `hello_world` (click on +folder icon).

Add these two files (thanks to ChatGPT):

Hello World

Add Source Files

CMakeLists.txt

Create a build directory, and right click it and choose Open in Integrated Terminal .

Type the following commands to validate that you can build and run the C++ code.

CMakeLists.txt

cmake_minimum_required(VERSION 3.0)

project(HelloWorld)

Define the source files

set(SOURCES

 hello_world.cpp

 #another_file.hh

)

Add executable targetadd_executable(${PROJECT_NAME} ${SOURCES})

hello_world.cpp

#include <iostream>

int main() {

 std::cout << "Hello, World!" << std::endl;

 return 0;}

Build and Run

cmake ..

make./HelloWorld

If you have closed Docker and Visual Studio code, here is the process to resume:

1. Go to Docker Desktop and restart your CPP Container
2. Open Visual Studio Code and attach to the running container

You were able to build code, and that's great, but it's important to also understand the details of how it

worked. The docker container doesn't retain state, and what happens is that your source code lives on

your machine, but it is mapped as a drive to the docker container. This way, whenever the docker

container restarts, it will not lose your source code.

Docker provides the infrastructure to achieve this and you can go to the Docker Desktop "Volume"

section to view the data. An even better article can be referenced here to figure out how it works.

Rerun

How It Works

https://code.visualstudio.com/docs/devcontainers/tutorial#_how-it-works

Visual Studio code provides the ability to map to this file.

Happy coding!

Assignments

Assignments

Objective of this assignment is to ensure you are able to build and run your code.

Please reference this article.

1. Visual Studio Code is setup
2. Docker Desktop is installed
3. Hello World application can be compiled and run

Development Environment

Requirements:

http://books.socialledge.com/books/c-programming/page/c-development-environment

Assignments

See the following pages for POSIX

https://en.kompf.de/cplus/posixlist.html

https://pubs.opengroup.org/onlinepubs/9699919799/toc.htm

Choose two POSIX APIs (e.g., pthread_create , mq_open , fork) and write detailed explanations on

how they work, their parameters, return values, and typical use cases.

POSIX

https://en.kompf.de/cplus/posixlist.html
https://pubs.opengroup.org/onlinepubs/9699919799/toc.htm

Lectures

Lectures

Simply put, C++ adds syntax sugar to make the code easier to write, and provides the benefits of

abstraction.

Introduction to C and C++

Lectures

Topics:

Classes and objects

Constructors and destructors

Inheritance

Fundamentally, an object is a collect of data and methods that you can invoke on it. Let's create an

object in C, and define APIs on it:

The C API has the following limitations:

struct members (ie: age), are "public"

This means that anyone can access the members of person_s

You manually have to create a function whose first parameter is person_s *pointer such that this

function can modify the object in a mutable way

Object Oriented Basics

Classes and Objects

typedef struct {

 int age;

} person_s;

void person__set_age(person_s* pointer, int age) {

 pointer->age = age;

}

void c_usage() {

 person_s person;

 person__set_age(&person, 123);

 person.age = 456; // C has no concept of private/public}

In C++, the limitations are overcome, and the syntax becomes:

In a way, C++ just adds a little syntax sugar to achieve the following:

Class has default visibility of private, hence m_age (as in member variable age) is private

Public API doesn't need the mutable pointer passed in, it is automatic

There is a hidden "this" pointer as a first parameter

One of the severe limitations of C is that constructors are not automatic. Let's find out what that means:

C++

class person_class {

 int m_age;

 public:

 void set_age(int age) {

 m_age = age;

 }

} ;

void usage() {

 person_class person;

 person.set_age(123);

 // p.set_age(123) really resolves to:

 //person::set_age(&person, 123);

 // cannot access private

 //person.m_age = 123;}

Constructors

class person_class {

 int m_age;

Default constructor is one you get for "free", and you may not always need to define it, especially if the

default constructor has empty code. However, if you specify another constructor with different

parameters, default constructor is deleted.

In the code above, this effectively yields this syntax:

 public:

 // "default" constructor

 person_class() {

 std::cout << "Constructor of person_class has been called" << std::endl;

 m_age = 0;

 }

 void set_age(int age) {

 m_age = age;

 }};

class person_class {

 int m_age;

 public:

 // constructor

 person_class(int age) {

 std::cout << "Constructor of person_class has been called" << std::endl;

 m_age = age;

 }

 void set_age(int age) {

 m_age = age;

 }};

class person_class {

 int m_age;

 public:

 person_class() = delete;

Destructors are intuitively opposite of the constructors. Unlike a constructor when the function is

invoked when the object is built, the destructor is called when the object goes out of scope and is thus

destroyed.

 // constructor

 person_class(int age) {

 std::cout << "Constructor of person_class has been called" << std::endl;

 m_age = age;

 }};

Destructors

class person_class {

 int m_age;

 public:

 ~person_class() {

 std::cout << "Destructor of person_class has been called" << std::endl;

 }};

Practical Example
class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_size; // Size of the vector

public:

 // Constructor with size and default value

 Vector(int size) {

 m_size = size;

 m_array = new int[size];

 std::cout << "Vector constructor called. Size: " << size << std::endl;

 }

Let's put all the knowledge acquired so far towards an exercise. We will build a simpler version of the

std::vector, or simply an integer array.

 // Destructor

 ~Vector() {

 delete[] m_array;

 std::cout << "Vector destructor called. Size: " << size << std::endl;

 }};

Exercise 1

// file: vector.hh

class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 // Constructor with max size

 Vector(int max_size);

 ~Vector();

 bool push_back(int value);

 int pop_back();

 int back();

 int front();

 int get_size();

 int get_max_size();

 void clear();};

Self-test framework

Ideally, we would create a unit-test framework, but to keep things simple, we can use the assert() API to

provide a rudimentary unit-test framework.

There is a problem with our current design of the vector. The code below has an issue; please compile

and run the code and see what happens!

#include <iostream>

#include <assert>

class Vector;

int main() {

 Vector v(5);

 assert(0 == v.get_size());

 assert(3 == v.get_max_size());

 assert(0 == v.pop_back());

 assert(true == v.push_back(123));

 assert(1 == v.get_size());

 assert(123 == v.pop_back());

 // ...

 return 0;}

Copy Problem

#include <iostream>

#include <assert>

class Vector;

int main() {

 Vector v1(10);

 // We want another vector with same properties as v1

 // Problem: We did not allocate new memory but are now referring to v1's memory

 Vector v2 = v1;

 return 0;}

After gaining advanced C++ experience, you will align to the fact that there should never be "naked

pointers" in C++. Pointers should always use more advanced pointers provided by the C++ 11 standard.

If we had built our vector like this, we would have caught the problem at compile-time rather than run-

time. Note that the code below is just a preview of what we will learn in the future, and this is not

required for the exercises as part of this article.

Copy Constructor

The solution is that we need to "deep copy" the object which is called the copy constructor. Let's

implement the copy constructor and see how it will work.

std::unique Pointer to the Rescue

// file: vector.hh

#include <memory>

class Vector {

private:

 std::unique_ptr<int> m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 // Constructor with max size

 Vector(int max_size);

 ~Vector();

 // ...};

class Vector {

 // RULE: Whenever there is dynamic memory allocation (new operator)

 // There shall always be a copy constructor to perform "deep copy"

 Vector(const Vector& copy) {

 m_max_size = copy.m_max_size;

 // do not :

The "Rule of Three" in C++ refers to a guideline for defining three specific member functions when a

class manages resources like dynamic memory (e.g., through pointers) to ensure proper behavior

regarding copying and destruction. The three key member functions are:

1. Destructor (~ClassName()):

The destructor is responsible for releasing resources (like dynamic memory) held by an object

when it is destroyed.

This is crucial to prevent memory leaks and properly clean up allocated resources.

2. Copy Constructor (ClassName(const ClassName& other)):

The copy constructor creates a new object as a copy of an existing object.

It is used when an object is initialized from another object of the same type (e.g., during object

initialization, function parameter passing by value).

3. Copy Assignment Operator (ClassName& operator=(const ClassName& other)):

The copy assignment operator defines how an existing object can be assigned the value of

another object of the same type.

It is invoked when you assign one object to another using the assignment operator = .

 //m_array_pointer = copy.m_array_pointer;

 m_array_pointer = new int[m_max_size]; // allocate your own memory, do not reference same memory as original copy

 std::cout << "Vector COPY constructor is called for size " << m_max_size << std::endl;

 // Deep copy

 for(int i = 0; i < m_max_size; i++) {

 m_array_pointer[i] = copy.m_array_pointer[i];

 }

 }

 // ...};

Rule of 3

Sample Code for Rule of 3

class Vector {

 int *m_memory_for_integers;

 int m_max_size;

 int m_current_size;

 void deep_copy(const Vector& source) {

 // Deep copy: Copy each member from one vector to another

 for (int i=0; i < m_current_size; i++) {

 m_memory_for_integers[i] = source.m_memory_for_integers[i];

 }

 }

public:

 // Fixed size vector that allocates memory once but cannot grow (by design)

 Vector(int max_size) {

 printf("Constructor is called to allocate %d integers\n", max_size);

 m_max_size = max_size;

 m_memory_for_integers = new int[m_max_size]; // Allocate memory dynamically

 }

 // Rule of 3: If dynamic memory, then:

 // - We must destructor

 // - Copy consructor

 // - Assignment operator

 // 1: Destructor

 ~Vector() {

 std::cout << ("Destructor is called") << std::endl;

 delete [] m_memory_for_integers;

 }

#if 0 /* BUGGY CODE: */

 // You get trivial copy constructor for free:

 // But if you allocate dynamic memory, is this what you want? No!

 Vector(const Vector& source) {

 m_max_size = source.m_max_size;

 m_current_size = source.m_current_size;

 // BUGGY CODE:

 m_memory_for_integers = source.m_memory_for_integers; // THIS IS THE PROBLEM

 }

#endif

Based on our learning so far, let us perform another exercise to create a string library.

 // 2: Copy constructor

 Vector(const Vector& source) {

 printf("Copy constructor called\n");

 m_max_size = source.m_max_size;

 m_current_size = source.m_current_size;

 // THIS IS THE KEY: Allocate our own memory

 // We do not wish to copy memory reference of another object literally

 m_memory_for_integers = new int[m_max_size];

 deep_copy(source);

 }

 // 3: Assignment operator

 Vector& operator=(const Vector& source) {

 printf("Assignment Operator called\n");

 m_max_size = source.m_max_size;

 m_current_size = source.m_current_size;

 m_memory_for_integers = new int[m_max_size]; // THIS IS THE KEY

 deep_copy(source);

 return *this;

 }

 // Const APIs that do not modify the Vector instance

 int get_size() const { return m_current_size; }

 int get_max_size() const { return m_max_size; }

 void print_memory_location_of_integers() const {

 printf("Memory allocated at\n");

 for(int i = 0; i < m_max_size; i++) {

 printf(" [%d] = %p\n", i, &m_memory_for_integers[i]);

 }

 }

};

Exercise 2

#include <string.h>

#include <iostream>

// String library

class string {

 char *m_string;

 int m_max_length;

 // Bonus points if you use unique_pointer

 // std::unique_ptr<char> m_string;

 public:

 string(int max_length) {

 m_max_length = max_length + 1; // +1 for NULL termination

 m_string = new char[m_max_length];

 }

 // Rule of 3: Because we will allocate memory dynamically

 ~string() {

 delete [] m_string;

 };

 // Implement constructor to allocate as much memory as the c_string

 string(const char *c_string);

 // Rule of 3: 2) Implement the copy constructor

 string(const string& copy);

 // Rule of 3: 3) Implmement the assignment operator

 string& operator=(const string& source);

 // Mutable API to make all characters lowercase or uppercase

 void to_upper();

 void to_lower();

 // Adding more data to the string

 void append_char(char c); // Append a char but only if string has memory available

 void append_string(const char *c_string); // Append another c_string only if string has memory available

 // Non-mutable APIs to check certain properties of the string

 bool equals_to(const char *c_string);

 bool contains(const char *c_string);

 The string class you built above has the same problem for the deep copy. Therefore, you will need to

create a copy constructor to be able to deep copy the string.

Pay close attention to this code:

 bool begins_with(const char *c_string);

 int get_length();

 void print() { std::cout << "String is: '" << m_string << "'" << std::endl; }

 // Other mutable APIs

 void clear();

 void set(const char *string) {

 strncpy(m_string, string, m_max_length);

 // All 3 lines do the same thing

 m_string[m_max_length - 1] = '\0';

 m_string[m_max_length - 1] = 0;

 //m_string[m_max_length - 1] = NULL;

 // We need the line(s) above because in case strncpy() ran out of space, it won't null terminate

 // "hello" -> 6 spaces

 // [0] = h, [1] = e, [2] = l, [3] = l, [4] = o, [5] = '\0';

 }

};

Copy Constructor

class string {

 // Rule of 3: 1) Functional destructor to deallocate dynamically allocated memory

 ~string() {

 delete [] m_string;

 };

 // Rule of 3: 2) Implement the copy constructor

 string(const string& copy);

 // Rule of 3: 3) Implmement the assignment operator

 string& operator=(const string& source);}

<TODO: Template of header and source file>

Header and Source File

Lectures

There are different types of operators in C++. More detail can be studied at this article.

Bitwise Operators

Operators

Various Operators

1. Arithmetic

void arithmatic() {

 int x = 0;

 x = x + 1;

 x = x - 1;

 x = x * 2;

 x = x / 3;

 x = x % 2;

 x++;

 x--;}

void bitwise() {

 int x = 0;

 x = x | 0b0001;

 x = x & 0b0000;

 x = x ^ 0b0001;

}

https://en.cppreference.com/w/cpp/language/operator_arithmetic
https://en.cppreference.com/w/c/language/operator_arithmetic

void great_example_of_xor_operator() {

 int a = 1;

 int b = 0;

 // Check if a and b are exclusive from each other

 if ((a == 1 && b == 0) || (a == 0 && b == 1)) {

 // ...

 }

 // We can actually do this:

 if (a xor b)

 // or

 if (a ^ b)}

2. Assignment

void assignment() {

 int x = 0;

 x = x + 3; // full form

 x += 3; // shortcut

 x -= 3;

 x *= 3;

 x /= 3;

 x %= 3;

 x &= 3;

 x |= 3;

 x ^= 3;

 x >>= 3;}

3. Comparison

void comparison() {

 int x = 0;

The operators would be boring if they were only applied to integers as demonstrated in the examples

above. We can actually inform the C++ compiler what operators should do for our classes. Let's reuse

the Vector of integers we built before and define some interesting operators.

 int y = 1;

 if (x == y)

 if (x != y)

 if (x > y)

 if (x < y)

 if (x >= y)

 if (x <= y)}

4. Logical

void logical() {

 int x = 0;

 int y = 1;

 if (x == 1 && y == 1)

 if (x == 1 || y == 1)

 if (! (x == 1 && y == 1))}

Operator Overloading

// file: vector.hh

class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 Vector(int max_size);

 ~Vector();

https://en.cppreference.com/w/cpp/language/operator_logical

 bool push_back(int value);

 int pop_back();

 Vector operator+=(const Vector& other) const; // operator +=

 Vector operator+(const Vector& other) const; // operator +

 bool operator==(const Vector& other) const; // operator==

 bool operator!=(const Vector& other) const; // operator!=

 Vector operator*=(int multiply_with); // * operator to multiply all integers by a number

 // ...

};

// operator+ definition

Vector Vector::operator+=(const Vector& other) const {

 // allocate memory that can hold data from both vectors

 Vector result(this->m_max_size + other.m_max_size);

 for (int i = 0; i < m_size; ++i) {

 result.push_back(m_array[i]);

 }

 for (int i = 0; i < other.m_size; ++i) {

 result.push_back(other.m_array[i]);

 }

 return result;

}

Vector Vector::operator+(const Vector& other) const {

 Vector result(*this);

 result += other;

 return result;

}

// operator== definition

bool Vector::operator==(const Vector& other) const {

 const bool is_equal = true;

 if (m_size != other.m_size) {

Here is how the operators may be used:

 return !is_equal;

 }

 for (int i = 0; i < m_size; ++i) {

 if (m_array[i] != other.m_array[i]) {

 return !is_equal;

 }

 }

 return is_equal;

}

// operator!= definition

bool Vector::operator!=(const Vector& other) const {

 return !(*this == other);

}

Vector operator*=(int multiply_with) {

 for (int i = 0; i < m_size; ++i) {

 m_array[i] *= multiply_with;

 }

 return *this;}

void vector_plus_operator_example() {

 puts("Let's practice strings");

 Vector v1(6);

 v1.push_back(1);

 v1.push_back(2);

 v1.push_back(3);

 Vector v2(3);

 v1.push_back(4);

 v1.push_back(5);

 v1.push_back(6);

 // Use our operator to add contents of two vectors

 v1 = v1 + v2;

 v1.print();

}

Let's implement a few more operators for your vector library. Typically, the [] operator is

implemented such that it returns a reference to one of the elements of the vector, but in our case, we

will return a read-only value.

void vector_multiply_operator_example() {

 Vector v1(6);

 v1.push_back(1);

 v1.push_back(2);

 v1.push_back(3);

 // Multiply operator in action

 v1 *= 5;

 v1.print();}

Exercises

Vector library operators

class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 Vector(int max_size);

 ~Vector();

 // First implement an "at()" API

 // Return an element at a particular index

 int at(int index);

 // Secondly, implement the [] operator:

 const int operator[](int index);}

Implement the following string operators, and also write unit-test code in main.cpp to test that the code

you wrote actually functions correctly.

String library operators

class string

{

 std::unique_ptr<char[]> m_string;

 int m_max_length;

public:

 string(int max_length);

 string(const char *c_string);

 // ------------------------------------

 // Implement the following operators

 // ------------------------------------

 // Adds two strings together

 string operator+=(const string& other) const;

 // "hello world" - "world" = "hello"

 string operator-=(const string& other) const;

 // "hello" * 2 = "hellohello"

 string operator*=(int how_many_times) const;

 // Implement shift operators to trim beginning or end of string

 // 0b1101 >> 1 ==> 0b0110

 // "hello" >>= 1 ==> "hell"

 // "hello" >>= 3 ==> "he"

 string operator>>=(int shift_right_by) const;

 // similar to python for slice operation

 string operator<<=(int shift_right_by) const;

 // All comparison operators are applicable

 // string s1("hello"); string s2("world")

 // if (s1 == s2)

 // if (s1 != s2)

 bool operator!=(const string &compare_with) const {

 return !(*this == compare_with);

 }

 bool operator==(const string &compare_with) const {

 // todo

 return false;

 }

 // Implement comparison operators

 bool operator<=(const string &compare_with) const;

 bool operator>=(const string &compare_with) const;

 bool operator<(const string &compare_with) const;

 bool operator>(const string &compare_with) const;

 bool operator!=(const char* compare_with) const;

 bool operator==(const char* compare_with) const;

}

Lectures

In one of our previous lessons, we built our own "vector", but it was specifically designed to only hold

integers. But what if we wanted to store float , or char , or bool ? This can be accomplished by using

templates in C++.

Templates
Templates and the need for header only code

Without a template

// file: vector.hh

class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 Vector(int max_size);

 ~Vector();

 bool push_back(int value);

 int pop_back();

 // ...};

With a template

// file: vector.hh

template <typename your_type>

class Vector {

http://books.socialledge.com/books/c-programming/page/object-oriented-basics#bkmrk-inheritance-0

Here is how you would use the code and have the C++ compiler multiply your code for different types:

When you design your header file, especially with a template, your code can be input right within the

class itself.

private:

 your_type* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 Vector(int max_size);

 ~Vector();

 bool push_back(your_type value);

 your_type pop_back();

 // ...};

int usage() {

 Vector<int> my_int_vector_v2(1);

 Vector<char> my_char_vector_v2(1);

 Vector<float> my_float_vector_v2(1);}

Sample 1

// file: vector.hh

template <typename your_type>

class Vector {

private:

 your_type* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 // code for function can be right here

 Vector(int max_size) {

 m_array = new int[max_size];

 m_max_size = max_size;

 m_size = 0;

 }

 void push_back(your_type value) {

 if (m_size < m_max_size) {

 m_array[m_size] = value;

 m_size++;

 }

 }

 // ...};

Sample 2

// file: vector.hh

template <typename your_type>

class Vector {

private:

 your_type* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 // we can declare functions but "define" them below

 // this improves code readability

 Vector(int max_size);

 void push_back(your_type value);

 // ...

};

// We must use "scope" operator to define which class the function belongs to

Vector::Vector(int max_size) {

The way templates work is that for each type, such as vector<int> or vector<bool> , the entire

header file is copied and pasted by the compiler for the new type. Because of this reason, classes that

use templates must be in header file only. This means that you cannot have vector.hh and also

vector.cc because the entire code has to exist in the header file only.

Standard code that doesn't use templates can be in file.hh and also file.cc and doesn't need to be

in a header. Although not that many libraries sometimes tend to be header only and the code split to

file.cc is for cosmetic reasons only.

 m_array = new int[max_size];

 m_max_size = max_size;

 m_size = 0;

}

void Vector::push_back(your_type value) {

 if (m_size < m_max_size) {

 m_array[m_size] = value;

 m_size++;

 }}

Source Code Organization

Template code in header file only

Standard code

// Header file:

// File: adder.hh

#pragma once

// Example of header file and source file

// Class should only declare functions, but not define them

class adder {

 public:

 int x;

 int y;

And then there should be a separate *.cc file or *.cpp file:

 // Only declare functions, do not "define" functions

 int get_sum();};

// File: adder.cc

#include "adder.hh"

int adder::get_sum() {

 return x + y;

}

Lectures

Before you read about the STL library, it is important to understand the Templates, so ensure that you

have covered that section before you start here.

There are different types of containers available in the STL library:

An STL array is a fixed-size array, much like int array[5] . The difference is that the STL array is

more of a "first class citizen" in terms of providing APIs on this array which are iterators, and other

accessors such as size() , front() and back() .

A vector is a more flexible container than an std::array because it can dynamically grow (or shrink).

Let us practice a code snippet that uses various APIs that this class provides.

STL Library

Various Containers

1. Sequence containers

array

vector

#include <iostream>

#include <vector>

int main() {

 // Create a vector of integers

 std::vector<int> vec;

 // Check if the vector is initially empty

 std::cout << "Initially, is vector empty? " << (vec.empty() ? "Yes" : "No") << std::endl;

http://books.socialledge.com/books/c-programming/page/templates
https://en.cppreference.com/w/cpp/container
https://cplusplus.com/reference/array/array/
https://cplusplus.com/reference/vector/vector/

 // Add elements to the vector

 vec.push_back(10);

 vec.push_back(20);

 vec.push_back(30);

 // Size and capacity after adding elements

 std::cout << "Size after adding 3 elements: " << vec.size() << std::endl;

 std::cout << "Capacity after adding 3 elements: " << vec.capacity() << std::endl;

 // Increase capacity of the vector

 vec.reserve(10);

 std::cout << "Capacity after reserve(10): " << vec.capacity() << std::endl;

 // Increase the size of the vector

 vec.resize(5);

 std::cout << "Size after resize(5): " << vec.size() << std::endl;

 std::cout << "Capacity after resize(5): " << vec.capacity() << std::endl;

 // Resize the vector to a smaller size does not reduce capacity

 vec.resize(2);

 std::cout << "Size after resize(2): " << vec.size() << std::endl;

 std::cout << "Capacity remains the same: " << vec.capacity() << std::endl;

 // Shrink the vector to fit its size

 vec.shrink_to_fit();

 std::cout << "Capacity after shrink_to_fit: " << vec.capacity() << std::endl;

 // Print current elements in the vector

 std::cout << "Current elements in vector: ";

 for (int i : vec) {

 std::cout << i << " ";

 }

 std::cout << std::endl;

 return 0;}

deque

forward_list

https://cplusplus.com/reference/deque/deque/
https://cplusplus.com/reference/forward_list/forward_list/

Iterate with cbegin()

list

2. Associative containers

set

multiset

map

multimap

3. Unordered associative containers

unordered_set

unordered_multiset

unordered_map

unordered_multimap

Iterators

Algorithms library

https://en.cppreference.com/w/cpp/iterator/begin
https://cplusplus.com/reference/list/list/
https://cplusplus.com/reference/set/set/
https://cplusplus.com/reference/set/multiset/
https://cplusplus.com/reference/map/map/
https://cplusplus.com/reference/map/multimap/
https://cplusplus.com/reference/unordered_set/unordered_set/
https://cplusplus.com/reference/unordered_set/unordered_multiset/
https://cplusplus.com/reference/unordered_map/unordered_map/
https://cplusplus.com/reference/unordered_map/unordered_multimap/
https://en.cppreference.com/w/cpp/algorithm

Other Content

Streams

https://en.cppreference.com/w/cpp/io#Stream-based_I.2FO

