
This is a foundation course on learning modern C++ language (C++ 11 and beyond).

This course covers object-oriented programming using modern C++. Because most automation, embedded 
applications, gaming, and many large data processing applications are written in C++, it is essential that 
software developers understand and master it. Hardware engineers are increasingly using C++ and OOP in 
system verification tasks, and as of the current decade, there has been a noticeable shift from C to C++ on 
microcontroller systems.

This course offers an excellent foundation in developing optimized modern C++ applications. The participants 
will learn to write faster and modular code, and the debugging techniques, for real-world applications. There will 
be assignments and exercises to accompany the lectures.

Learning Outcomes
At the conclusion of the course, you should be able to:

Modern C++ (post C++11)
Apply object oriented concepts to software development problems using modern C++
Understand and use the basic programming constructs of C++
Manipulate various C++ data types, such as arrays, strings, and pointers
Write C++ code using principles of object-oriented programming
Understand design patterns in C++ using singleton pattern
Manage memory appropriately, including proper allocation/deallocation procedures using unique and smart 
pointers
Best practices (dos and don'ts)
Utilize best practices from C++ GSL or Google Abseil libraries

Setup development environment 

Basics of Docker and container management
Review class structure
Operating System Fundamentals: Linux, Mac, POSIX, RTOS
Modern approach to "manpages" 

tldr

chatgpt
SSH and password-less login

System Monitoring:  top ,  df

Class Structure
Description

1. Introduction

https://docker-curriculum.com/
https://tldr.sh/
https://chat.openai.com/


Homework: Operating Systems and POSIX

Basics 
Types, strings
Control structures

Declare and define functions 
Call by value, reference, pointer
Overloading
Default parameters

Classes and objects
Constructors and destructors
Inheritance
Rule of 3
Introduction to unique_ptr

Operators (=, [], *, -> etc.)

STL library containers
Iterators

Templates and the need for header only code

Review Questions
Feedback
Streams
Chrono
Exam

OO Inheritance
Abstract classes
Virtual and pure virtual functions
Virtual destructors
Polymorphism

2. Basic Syntax & Functions

3. Object Oriented Basics

4. Operators & Templates

5. Midterm

6. Object Oriented Advanced

http://books.socialledge.com/books/c-programming/page/operators-019
http://books.socialledge.com/books/c-programming/page/stl-library
http://books.socialledge.com/books/c-programming/page/templates
http://books.socialledge.com/books/c-programming/page/object-oriented-basics
http://books.socialledge.com/books/c-programming/page/object-oriented-advanced


Unique pointer
Shared pointer
Weak pointer

Lambdas 
How it can be used

Concurrency 
Threads
Mutexes
Condition Variables

Deadlock Empire

Libraries 
Boost
Guideline support library (GSL)
Abseil

Design patterns 
Singleton

Review Questions
Collect Feedback
Exam

 

7. Smart Pointers

8. More Advanced Topics

9. Powerful Libraries

10. Final Examination

Revision #11 

Created 8 months ago by Preet Kang

Updated 6 months ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

