
Topics:

Classes and objects
Constructors and destructors
Inheritance

Fundamentally, an object is a collect of data and methods that you can invoke on it. Let's create an object in C,
and define APIs on it:

The C API has the following limitations:

struct members (ie: age), are "public"

This means that anyone can access the members of person_s

You manually have to create a function whose first parameter is person_s *pointer such that this function
can modify the object in a mutable way

In C++, the limitations are overcome, and the syntax becomes:

Object Oriented Basics

Classes and Objects

typedef struct {

 int age;

} person_s;

void person__set_age(person_s* pointer, int age) {

 pointer->age = age;

}

void c_usage() {

 person_s person;

 person__set_age(&person, 123);

 person.age = 456; // C has no concept of private/public}

C++

In a way, C++ just adds a little syntax sugar to achieve the following:

Class has default visibility of private, hence m_age (as in member variable age) is private
Public API doesn't need the mutable pointer passed in, it is automatic

There is a hidden "this" pointer as a first parameter

One of the severe limitations of C is that constructors are not automatic. Let's find out what that means:

class person_class {

 int m_age;

 public:

 void set_age(int age) {

 m_age = age;

 }

} ;

void usage() {

 person_class person;

 person.set_age(123);

 // p.set_age(123) really resolves to:

 //person::set_age(&person, 123);

 // cannot access private

 //person.m_age = 123;}

Constructors

class person_class {

 int m_age;

 public:

 // "default" constructor

 person_class() {

 std::cout << "Constructor of person_class has been called" << std::endl;

 m_age = 0;

 }

 void set_age(int age) {

Default constructor is one you get for "free", and you may not always need to define it, especially if the default
constructor has empty code. However, if you specify another constructor with different parameters, default
constructor is deleted.

In the code above, this effectively yields this syntax:

Destructors are intuitively opposite of the constructors. Unlike a constructor when the function is invoked when

 m_age = age;

 }};

class person_class {

 int m_age;

 public:

 // constructor

 person_class(int age) {

 std::cout << "Constructor of person_class has been called" << std::endl;

 m_age = age;

 }

 void set_age(int age) {

 m_age = age;

 }};

class person_class {

 int m_age;

 public:

 person_class() = delete;

 // constructor

 person_class(int age) {

 std::cout << "Constructor of person_class has been called" << std::endl;

 m_age = age;

 }};

Destructors

the object is built, the destructor is called when the object goes out of scope and is thus destroyed.

Let's put all the knowledge acquired so far towards an exercise. We will build a simpler version of the
std::vector, or simply an integer array.

class person_class {

 int m_age;

 public:

 ~person_class() {

 std::cout << "Destructor of person_class has been called" << std::endl;

 }};

Practical Example
class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_size; // Size of the vector

public:

 // Constructor with size and default value

 Vector(int size) {

 m_size = size;

 m_array = new int[size];

 std::cout << "Vector constructor called. Size: " << size << std::endl;

 }

 // Destructor

 ~Vector() {

 delete[] m_array;

 std::cout << "Vector destructor called. Size: " << size << std::endl;

 }};

Exercise 1

Ideally, we would create a unit-test framework, but to keep things simple, we can use the assert() API to
provide a rudimentary unit-test framework.

// file: vector.hh

class Vector {

private:

 int* m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

 int m_size; // Current size of the vector

public:

 // Constructor with max size

 Vector(int max_size);

 ~Vector();

 bool push_back(int value);

 int pop_back();

 int back();

 int front();

 int get_size();

 int get_max_size();

 void clear();};

Self-test framework

#include <iostream>

#include <assert>

class Vector;

int main() {

 Vector v(5);

 assert(0 == v.get_size());

 assert(3 == v.get_max_size());

 assert(0 == v.pop_back());

There is a problem with our current design of the vector. The code below has an issue; please compile and run
the code and see what happens!

After gaining advanced C++ experience, you will align to the fact that there should never be "naked pointers" in
C++. Pointers should always use more advanced pointers provided by the C++ 11 standard. If we had built our
vector like this, we would have caught the problem at compile-time rather than run-time. Note that the code
below is just a preview of what we will learn in the future, and this is not required for the exercises as part of
this article.

 assert(true == v.push_back(123));

 assert(1 == v.get_size());

 assert(123 == v.pop_back());

 // ...

 return 0;}

Copy Problem

#include <iostream>

#include <assert>

class Vector;

int main() {

 Vector v1(10);

 // We want another vector with same properties as v1

 // Problem: We did not allocate new memory but are now referring to v1's memory

 Vector v2 = v1;

 return 0;}

std::unique Pointer to the Rescue

// file: vector.hh

#include <memory>

class Vector {

private:

 std::unique_ptr<int> m_array; // Pointer to dynamically allocated array

 int m_max_size; // Max size of the vector

Copy Constructor

The solution is that we need to "deep copy" the object which is called the copy constructor. Let's implement the
copy constructor and see how it will work.

The "Rule of Three" in C++ refers to a guideline for defining three specific member functions when a class
manages resources like dynamic memory (e.g., through pointers) to ensure proper behavior regarding
copying and destruction. The three key member functions are:

1.

 int m_size; // Current size of the vector

public:

 // Constructor with max size

 Vector(int max_size);

 ~Vector();

 // ...};

class Vector {

 // RULE: Whenever there is dynamic memory allocation (new operator)

 // There shall always be a copy constructor to perform "deep copy"

 Vector(const Vector& copy) {

 m_max_size = copy.m_max_size;

 // do not :

 //m_array_pointer = copy.m_array_pointer;

 m_array_pointer = new int[m_max_size]; // allocate your own memory, do not reference same memory as original copy

 std::cout << "Vector COPY constructor is called for size " << m_max_size << std::endl;

 // Deep copy

 for(int i = 0; i < m_max_size; i++) {

 m_array_pointer[i] = copy.m_array_pointer[i];

 }

 }

 // ...};

Rule of 3

Destructor (~ClassName()):

The destructor is responsible for releasing resources (like dynamic memory) held by an object when it
is destroyed.
This is crucial to prevent memory leaks and properly clean up allocated resources.

2. Copy Constructor (ClassName(const ClassName& other)):

The copy constructor creates a new object as a copy of an existing object.
It is used when an object is initialized from another object of the same type (e.g., during object
initialization, function parameter passing by value).

3. Copy Assignment Operator (ClassName& operator=(const ClassName& other)):

The copy assignment operator defines how an existing object can be assigned the value of another
object of the same type.

It is invoked when you assign one object to another using the assignment operator = .

Sample Code for Rule of 3

class Vector {

 int *m_memory_for_integers;

 int m_max_size;

 int m_current_size;

 void deep_copy(const Vector& source) {

 // Deep copy: Copy each member from one vector to another

 for (int i=0; i < m_current_size; i++) {

 m_memory_for_integers[i] = source.m_memory_for_integers[i];

 }

 }

public:

 // Fixed size vector that allocates memory once but cannot grow (by design)

 Vector(int max_size) {

 printf("Constructor is called to allocate %d integers\n", max_size);

 m_max_size = max_size;

 m_memory_for_integers = new int[m_max_size]; // Allocate memory dynamically

 }

 // Rule of 3: If dynamic memory, then:

 // - We must destructor

 // - Copy consructor

 // - Assignment operator

 // 1: Destructor

 ~Vector() {

 std::cout << ("Destructor is called") << std::endl;

 delete [] m_memory_for_integers;

 }

#if 0 /* BUGGY CODE: */

 // You get trivial copy constructor for free:

 // But if you allocate dynamic memory, is this what you want? No!

 Vector(const Vector& source) {

 m_max_size = source.m_max_size;

 m_current_size = source.m_current_size;

 // BUGGY CODE:

 m_memory_for_integers = source.m_memory_for_integers; // THIS IS THE PROBLEM

 }

#endif

 // 2: Copy constructor

 Vector(const Vector& source) {

 printf("Copy constructor called\n");

 m_max_size = source.m_max_size;

 m_current_size = source.m_current_size;

 // THIS IS THE KEY: Allocate our own memory

 // We do not wish to copy memory reference of another object literally

 m_memory_for_integers = new int[m_max_size];

 deep_copy(source);

 }

 // 3: Assignment operator

 Vector& operator=(const Vector& source) {

 printf("Assignment Operator called\n");

 m_max_size = source.m_max_size;

 m_current_size = source.m_current_size;

 m_memory_for_integers = new int[m_max_size]; // THIS IS THE KEY

 deep_copy(source);

 return *this;

 }

 // Const APIs that do not modify the Vector instance

Based on our learning so far, let us perform another exercise to create a string library.

 int get_size() const { return m_current_size; }

 int get_max_size() const { return m_max_size; }

 void print_memory_location_of_integers() const {

 printf("Memory allocated at\n");

 for(int i = 0; i < m_max_size; i++) {

 printf(" [%d] = %p\n", i, &m_memory_for_integers[i]);

 }

 }

};

Exercise 2

#include <string.h>

#include <iostream>

// String library

class string {

 char *m_string;

 int m_max_length;

 // Bonus points if you use unique_pointer

 // std::unique_ptr<char> m_string;

 public:

 string(int max_length) {

 m_max_length = max_length + 1; // +1 for NULL termination

 m_string = new char[m_max_length];

 }

 // Rule of 3: Because we will allocate memory dynamically

 ~string() {

 delete [] m_string;

 };

 // Implement constructor to allocate as much memory as the c_string

 string(const char *c_string);

 // Rule of 3: 2) Implement the copy constructor

 string(const string& copy);

 // Rule of 3: 3) Implmement the assignment operator

 string& operator=(const string& source);

 // Mutable API to make all characters lowercase or uppercase

 void to_upper();

 void to_lower();

 // Adding more data to the string

 void append_char(char c); // Append a char but only if string has memory available

 void append_string(const char *c_string); // Append another c_string only if string has memory available

 // Non-mutable APIs to check certain properties of the string

 bool equals_to(const char *c_string);

 bool contains(const char *c_string);

 bool begins_with(const char *c_string);

 int get_length();

 void print() { std::cout << "String is: '" << m_string << "'" << std::endl; }

 // Other mutable APIs

 void clear();

 void set(const char *string) {

 strncpy(m_string, string, m_max_length);

 // All 3 lines do the same thing

 m_string[m_max_length - 1] = '\0';

 m_string[m_max_length - 1] = 0;

 //m_string[m_max_length - 1] = NULL;

 // We need the line(s) above because in case strncpy() ran out of space, it won't null terminate

 // "hello" -> 6 spaces

 // [0] = h, [1] = e, [2] = l, [3] = l, [4] = o, [5] = '\0';

 }

};

Copy Constructor

 The string class you built above has the same problem for the deep copy. Therefore, you will need to create a
copy constructor to be able to deep copy the string.

Pay close attention to this code:

<TODO: Template of header and source file>

class string {

 // Rule of 3: 1) Functional destructor to deallocate dynamically allocated memory

 ~string() {

 delete [] m_string;

 };

 // Rule of 3: 2) Implement the copy constructor

 string(const string& copy);

 // Rule of 3: 3) Implmement the assignment operator

 string& operator=(const string& source);}

Header and Source File

Revision #15

Created 1 year ago by Preet Kang

Updated 1 year ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

