Templates

Templates and the need for header only code

In one of our previous lessons, we built our own "vector”, but it was specifically designed to only hold integers.

But what if we wanted to store float , or char , or bool ? This can be accomplished by using templates in
C++.

Without a template

// file: vector.hh
class Vector {
private:
int* m array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

bool push back(int value);

int pop back();

// ...}

With a template

// file: vector.hh
template <typename your type>
class Vector {
private:
your_type* m array; // Pointer to dynamically allocated array

int m max size; // Max size of the vector


http://books.socialledge.com/books/c-programming/page/object-oriented-basics#bkmrk-inheritance-0

int m size; // Current size of the vector
public:
Vector(int max_size);

~Vector();

bool push back(your type value);
your_ type pop_back();

// ...}

Here is how you would use the code and have the C++ compiler multiply your code for different types:

int usage() {
Vector<int> my int vector v2(1);
Vector<char> my char vector v2(1);

Vector<float> my float vector v2(1);}

Sample 1

When you design your header file, especially with a template, your code can be input right within the class itself.

// file: vector.hh
template <typename your type>
class Vector {
private:
your_type* m _array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
// code for function can be right here
Vector(int max_size) {
m_array = new int[max sizel;
m _max_size = max_ size;

m size = 0;



void push back(your type value) {
if (m_size < m max _size) {
m_array[m size] = value;

m size++;

// ...}

Sample 2

// file: vector.hh
template <typename your type>
class Vector {
private:
your_type* m_array; // Pointer to dynamically allocated array
int m max size; // Max size of the vector
int m size; // Current size of the vector
public:
// we can declare functions but "define" them below
// this improves code readability

Vector(int max_size);
void push back(your type value);

70 ooa

b
// We must use "scope" operator to define which class the function belongs to
Vector: :Vector(int max size) {

m array = new int[max sizel];

m max size = max size;

m size = 0;
}
void Vector::push back(your type value) {

if (m size < m max size) {

m array[m size] = value;



m size++;

}}

Source Code Organization

Template code in header file only

The way templates work is that for each type, such as vector<int> or vector<bool> , the entire header file is
copied and pasted by the compiler for the new type. Because of this reason, classes that use templates must

be in header file only. This means that you cannot have vector.hh and also vector.cc because the entire
code has to exist in the header file only.

Standard code

Standard code that doesn't use templates can be in file.hh and also file.cc and doesn't need to be in a

header. Although not that many libraries sometimes tend to be header only and the code splitto file.cc is for
cosmetic reasons only.

// Header file:
// File: adder.hh
#pragma once
// Example of header file and source file
// Class should only declare functions, but not define them
class adder {
public:

int x;

int y;

// Only declare functions, do not "define" functions

int get sum();};

And then there should be a separate *.cc file or *.cpp file:

// File: adder.cc
#include "adder.hh"
int adder::get sum() {

return x + vy;



Revision #5
Created 7 months ago by Preet Kang
Updated 6 months ago by Preet Kang


http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

