
Learning Objectives

Reference Material

Tools

Books and Online Resources

Basics

Number Systems

Python Number Converter

Storage Units

Programming Languages

How program is compiled in C

Assignments

Git

CPU Arhitecture

CPU Architecture Basics

Operating System

System Call

CMPE 120 -
Computer
Organization and
Architecture

Upon successful completion of this course, students will be able to:

1. Understand digital logic and how it is used to build a computer system.

2. Explain how CPU functions to run a software program.

3. Develop assembly programs to control the operation of the CPU.

4. Understand the format of instructions and their operations.

5. Understand the role of the other components of a computer system such as buses and memories

and how

they work together.

Lecture plan:

Number System (CLO 1)

Binary

Hex

ASCII

Units (CLO 1)

Kibibytes, Kilobytes etc.

Hardware Architecture (CLO 2)

Data bus

Address bus

Microcontrollers

On-chip peripherals review

Compilers and Programming Languages (CLO 3, CLO 4)

Compiled vs. Interpreted languages

C compiler

Hands-on with a compiler

Learning Objectives

CLO

Reference Material

Reference Material

In the past, we needed to setup special tools on a local computer (i.e.: your laptop) to test software. In

the modern era, the advanced made by software developers have led us to several tools we can use to

understand a machine's instruction set.

1. Python Interpreters

https://www.programiz.com/python-programming/online-compiler/

Python interpreter

2. MIPS Emulators

WeMips

3. Logic Emulators

Logic.ly/demo

https://circuitverse.org/simulator

Tools

https://www.programiz.com/python-programming/online-compiler/
https://www.python.org/shell/
https://rivoire.cs.sonoma.edu/cs351/wemips/
https://logic.ly/demo
https://circuitverse.org/simulator

Reference Material

Really awesome book from Robert Plantz:

Introduction to Computer Organization

Books:

Structured Computer Organization 6th Edition

Computer Organization and Design

Online Resources

https://thinkingeek.com/arm-assembler-raspberry-pi/

https://azeria-labs.com/writing-arm-assembly-part-1/

Books and Online Resources

https://bob.cs.sonoma.edu/
https://bob.cs.sonoma.edu/IntroCompOrg-RPi/intro-co-rpi.html
https://csc-knu.github.io/sys-prog/books/Andrew S. Tanenbaum - Structured Computer Organization.pdf
https://ict.iitk.ac.in/wp-content/uploads/CS422-Computer-Architecture-ComputerOrganizationAndDesign5thEdition2014.pdf
https://thinkingeek.com/arm-assembler-raspberry-pi/
https://azeria-labs.com/writing-arm-assembly-part-1/

Basics

Basics

The number system holds significance in terms of writing and expressing code to a computer, typically

in a programming language. Note that we (as humans) do not use hex or binary numbers that much

outside of the computer science domain. For example, we don't walk into a supermarket and read

prices in binary such as $0x10 :)

Often times in programming, we need to express numbers more quickly, and we might say int

x = 0x10000000 to quickly indicate 32-bit value with bit31 set to 1. Notation x = 0x10000000 is

easier than writing x = 268435456 which would be more cryptic for a programmer to realize the

significance of because the reader of the programming code will not be able to quickly realize that it is

specifically setting bit31 to value of 1 .

Typical numbers we are familiar with are decimals which are technically "base 10" numbers. So an

ordinary number that we may be aware of such as 123 can be written as 123 10.

The number 123 could also be written as:

1*102 +2*101 +3*100 which is equal to 100 + 20 + 3 =12310

Binary numbers are always 1s and 0s only. Similar to decimal numbers, binary numbers increase in

powers of 2, rather than powers of 10. Binary numbers are written by with the "0b" notation, such as

0b1100

For example, binary 101 or 0b101 can be written as:

Number Systems

Number Types

Decimal

Binary

1*22 +0*21 +1*20 which is equal to 4 + 0 + 1 = 510

One digit of a hex number can count from 0-15, but since we have to represent the hex number using a

single character, the numbers 0-9 are usual numbers, and the numbers 10-15 are represented by A, B,

C, D, E, F

Where decimal is a power of 10, and binary is power of 2, hex numbers are powers of 16. Hex numbers

are written with the "0x" notation, such as 0x10.

For example, hex 0x12 can be written as:

1*161 +2*160 which is equal to 16 + 2 = 1810

As another example, hex 0xC5 can be written as:

12*161 +5*160 which is equal to 192 + 5 = 19710

Decimal (base 10) numbers can be converted in a couple of different ways as described here. One of

the methods is to continue dividing by 2 and note down the remainder as described in the image below.

The article above also describes a potentially faster method of conversion so be sure to read it!

Hex

Exercises

Decimal to Binary

https://www.wikihow.com/Convert-from-Decimal-to-Binary

Please try converting the following to binary:

1. 125
2. 255
3. 500

Decimal to hex is similar to Decimal to Binary except that we are dealing with powers of 16 rather than

powers of 2.

My favorite method of conversion from decimal to hex is to first convert the number to binary. For

example, let's start with a large number such as 23912. We can use the Decimal to Binary method to

convert this first to binary:

2391210

Decimal to Hex

0b101110101101000

Split it up to nibbles:
0b101 1101 0110 1000

Then use the lookup table listed in Hex to Binary:
0x5D68

Please try converting the following to hex:

1. 125
2. 255
3. 500

The following table can be utilized to convert hex to binary very instantly:

x0x1x2x3x4x5x6x7x8x9xAxBxCxDxExF

0000000100100011010001010110011110001001101010111100110111101111

First row is HEX, and the second row is binary. For whatever hex number we wish to convert, we simply

locate its equivalent in binary. For instance, if we wish to convert 0x5 to binary, it is 0b0101 , and 0xA5

would be 0b1010.0101 as you can convert one "nibble" (4-bits) at a time.

Let's take another example to convert 0x1BF to binary; simply break it down by "nibbles":

0x1 --> 0b0001

0xB --> 0b1011

0xF --> 0x1111

Answer: 0b0001 1011 1111

Please try converting the following to binary:

1. 0x55
2. 0x125
3. 0x40000000

For Hex to Binary, we used a lookup table as a "cheat code" :). For Hex to decimal, it would be easier to

re-write the numbers as powers of 16. For example, to convert 0x1BF to decimal, we can break it down

Hex to Binary

Hex to Decimal

to:

0x1 --> 1 * 162 --> 256

0xB --> 11 * 161 --> 176

0xF --> 15 * 160 --> 15
256+176+15 = 447

Please try converting the following to decimal:

1. 0x55
2. 0x125
3. 0x40000000

Basics

Generally speaking, practiced skill cannot be easily forgotten. It is far better to go through the process

and practice converting a number, rather than to memorize the process.

Before we get started, have a look at the Tools Page to get started with a Python Interpreter we could

use for this exercise.

Python Number Converter

Number to Printable Hex
def nibble_to_ascii(nibble: int) -> str:

 """

 This is a comment

 Input: Nibble (4-bits)

 Output: Single character HEX as a string

 Example: Input = 10, Output = 'A'

 Example: Input = 8, Output = '8'

 """

 table = ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F']

 return table[nibble]

def to_hex(number: int) -> str:

 """

 This is a comment

 Input: Number (integer)

 Output: String

 Example: Input = 43605, Output = "0xAA55"

 """

 answer = ""

 # Forever loop

 while True:

http://books.socialledge.com/books/cmpe-120---computer-organization-and-architecture/page/tools

Write a function to_binary() that takes a number, and returns the string equivalent version of the

number in binary. You can borrow the template above of to_hex() function and most of the logic might

be similar except that we would be dividing number by 2 rather than 16.

 # Integer divide using the // operator

 quotient = number // 16

 # Get the remainder using the % operator

 remainder = number % 16

 # Accumulate result

 answer = nibble_to_ascii(remainder) + answer

 # Set the number we need to use for next time

 number = quotient

 # We break the "loop" when division turns to zero

 if (quotient == 0):

 break

 return "0x" + answer

print(to_hex(123456789))

print(to_hex(0b1010101))print(to_hex(0xDEADBEEF))

Exercise

Basics

I fear that most of the technical articles on the Internet misinterpret some of the common storage units.

This article does a good job at clearly providing the relevant information:

Storage Units

A kilobyte is made up of either 1,000 or 1,024 bytes. This distinction can be a little “

https://study.com/learn/lesson/data-storage-units-kb-mb-gb-tb.html

Apart from the funny picture above (Baker's Kilobyte?), the real story can be uncovered by referencing

the picture below. Thanks to this original article that does a great job at providing the valuable

information.

So while most people might misinterpret "kilo" as 1024 when it comes to storage units, the right way is

thus "kibibytes". It would be an interesting conversation to discuss kibibytes as most people may not be

aware, and this would make you look incredibly smart (and correct) :)

Here is another great image for reference:

tricky and has to do with the difference between binary math (which computers rely

on) and base-10 math (which most humans use in daily life). In practical terms, both

definitions of kilobyte are used. In some cases, a distinction will be made between a

kilobyte (1,000 bytes) and a kibibyte (1,024 bytes), though this is less common.

The Real Story

https://ozanerhansha.medium.com/kilobytes-vs-kibibytes-d77eb2ff6c2a

Based on the image above, the following should be used using capital letter first, then lowercase i and

then finally capital B for bytes.

KiB

MiB

GiB

TiB

PiB

etc.

Reference Articles

