
Learn how to manipulate and read the voltage levels of the pins on the SJ Board.

Bit Manipulation

LPC40xx Memory Map

General Purpose Input Output

GPIO Lab Assignment

GPIO

Bit-masking is a technique to selectively modify individual bits without affecting other bits.

To set a bit, we need to use the OR operator. This is just like an OR logical gate you should've learned

in your Digital Design course.

To set a bit to 0, in other words reset or clear a bit, the logic is similar, but instead of ORing a bit, we

will an AND function to clear. Note: that ANDing something with 0 clears it and ANDing something

with a 1 does not change it. The tilde (~) operator can help us invert the bits of a value in the

following examples:

Bit Manipulation

Bit SET

 // We want to set Bit #7 of a variable called: REG

REG = REG | 0x80;

// Let's set bit #31:

REG = REG | 0x80000000;

// Here is an easier way to write these:

// (1 << 31) means 1 gets shifted left 31 times to produce 0x80000000

REG = REG | (1 << 31);

// Simplify further:

REG |= (1 << 31);

// Set Bit #21 and Bit #23 at the same timeREG |= (1 << 21) | (1 << 23);

Bit CLEAR

// Assume we want to reset Bit#7 of a register called: REG

REG = REG & 0x7F;

REG = REG & ~(0x80); // Same thing as above, but using ~ is easier

// Let's reset bit#31:

REG = REG & ~(0x80000000);

// Let's show you the easier way:

Suppose you want to check bit 7 of a register is set:

Now let's work through another example in which we want to wait until bit#9 is 0:

REG = REG & ~(1 << 31);

// Simplify further:

REG &= ~(1 << 31);

// Reset Bit#21 and Bit# 23:REG &= ~((1 << 21) | (1 << 23));

Bit TOGGLE

 // Using XOR operator to toggle 5th bitREG ^= (1 << 5);

Bit CHECK

bool check_bit = REG & (1 << 7);

if(check_bit)

{

 	DoAThing();}

// One way:

while(REG & (1 << 9) != 0)

{

 continue;

}

// Another way:

while(REG & (1 << 9))

{

 continue;}

Multi-Bit Insertion

// Insert a set of continguous bits into a target value.

// Value within target is unknown. This is shown using X's

//

// target = 0xXXXX'XXXX

// ^

// /

// /

// value = 0xABCD --+

// position = 16

// width = 16

//

// return = 0xABCD'XXXX

// First you must clear the bits in that location

target &= ~(0xFFFF << 16);

// Now that there are only 0s from position 16 to 31, ew

// can OR those bits with our own set of 1s.target |= (0xABCD << 16);

Multi-Bit Extraction

/// Extract a set of contiguous bits from a target value.

///

/// target = 0x00FE'DCBA

/// ^

/// /

/// /

/// value = 4 -----------+

/// width = 8

///

/// return = 0xCB

// Shift target to the left by 4 to make the 0th bit the start of the bits you want to extract.

// Store the result in to a local variable

uint32_t result = target >> 4;

// Since we only want 8 bits from the result, we need to clear away the rest of the bits from

// the original target.

// AND the result with 0xFF, to clear everything except for the first 8 bits.

result = result & 0xFF;

A memory map is a layout of how the memory maps to some set of information. With respect to

embedded systems, the memory map we are concerned about maps out where the Flash (ROM),

peripherals, interrupt vector table, SRAM, etc are located in address space.

Memory mapped IO is a a means of mapping memory address space to devices external (IO) to the

CPU, that is not memory.

Flash could be mapped to addresses 0x00000000 to 0x00100000 (1 Mbyte range)

GPIO port could be located at address 0x1000000 (1 byte)

Interrupt vector table could start from 0xFFFFFFFF and run backwards through the memory space

SRAM gets the rest of the usable space (provided you have enough SRAM to fill that area)

It all depends on the CPU and the system designed around it.

Port mapped IO uses additional signals from the CPU to qualify which signals are for memory and

which are for IO. On Intel products, there is a (~M/IO) pin that is LOW when selecting MEMORY and

HIGH when it is selecting IO.

The neat thing about using port mapped IO, is that you don't need to sacrifice memory space for IO, nor

do you need to decode all 32-address lines. You can limit yourself to just using 8-bits of address space,

which limits you to 256 device addresses, but that may be more than enough for your purposes.

LPC40xx Memory Map

What is a Memory Map

Memory mapped IO

For example (assuming a 32-bit system)

Port Mapped IO

Figure 2. Address Decoding with port map

(http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html)

LPC40xx memory map

http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html

Figure 3. LPC17xx Memory Map, which is nearly the same as the LPC40xx memory map

From this you can get an idea of which section of memory space is used for what. This can be found in

the UM10562 LPC40xx user manual. If you take a closer look you will see that very little of the address

space is actually taken up. With up to 4 billion+ address spaces (because 2^32 is a big number) to use

you have a lot of free space to spread out your IO and peripherals.

The LPC40xx chips, reduce bus line count, make all of the peripherals 32-bit aligned. Which means you

must grab 4-bytes at a time. You cannot grab a single byte (8-bits) or a half-byte (16-bits) from memory.

This eliminates the 2 least significant bits of address space.

Reducing the number of lines needed to decode IO

Please read the following code snippet. This is runnable on your system now. Just copy and paste it

into your main.cpp file.

Accessing IO using Memory Map in C

//The goal of this software is to set the GPIO pin P1.0 to

// low then high after some time. Pin P1.0 is connected to an LED.

// The address to set the direction for GPIOs in port 1 is below:

//

// FIO1DIR = 0x2009C020

//

// The address to set the output value of a pin in port 1 is below:

//

// FIO1PIN = 0x2009C034

#include <cstdint>

volatile uint32_t * const FIO1DIR = (uint32_t *)(0x2009C020);

volatile uint32_t * const FIO1PIN = (uint32_t *)(0x2009C034);

int main(void)

{

 // Set 0th bit, setting Pin 0.0 to an output pin

 *FIO1DIR |= (1 << 0);

 // Set 0th bit, setting Pin 0.0 to high

 *FIO1PIN &= ~(1 << 0);

 // Loop for a while (volatile is needed, otherwise this will not loop for very long!)

 for(volatile uint32_t i = 0; i < 1000000; i++);

 // Clear 0th bit, setting Pin 0.0 to low

 *FIO1PIN |= (1 << 0);

 return 0;}

volatile keyword tells the compiler not to optimize this variable out, even if it seems useless

?
const keyword tells the compiler that this variable cannot be modified

?

The above is nice and it works, but its a lot of work. You have to go back to the user manual to see

which addresses are for what register. There must be some better way!!

Take a look at the LPC40xx.h file, which It is located in the

SJSU-Dev/firmware/library/L0_LowLevel/LPC40xx.h . Here you will find definitions for each peripheral

memory address in the system.

Lets say you wanted to port the above code to something a bit more structured:

Open up "LPC40xx.h"

Search for "GPIO"

You will find a struct with the name LPC_GPIO_TypeDef.

Now search for "LPC_GPIO_TypeDef" with a #define in the same line.

You will see that LPC_GPIO_TypeDef is a pointer of these structs

#define LPC_GPIO0 ((LPC_GPIO_TypeDef *) LPC_GPIO0_BASE)

#define LPC_GPIO1 ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE)

#define LPC_GPIO2 ((LPC_GPIO_TypeDef *) LPC_GPIO2_BASE)

#define LPC_GPIO3 ((LPC_GPIO_TypeDef *) LPC_GPIO3_BASE)

#define LPC_GPIO4 ((LPC_GPIO_TypeDef *) LPC_GPIO4_BASE)

We want to use LPC_GPIO1 since that corrisponds to GPIO port 1.

If you inspect LPC_GPIO_TypeDef, you can see the members that represent register FIODIR and

FIOPIN

You can now access FIODIR and FIOPIN in the following way:

Notice "const" placement and how it is placed after the uint32_t *. This is because we want to

make sure the pointer address never changes and remains constant, but the value that it

references should be modifiable.

?

Using the LPC40xx.h

#include "LPC40xx.h"

int main(void)

{

 // Set direction of P0.0 to 1, which means OUTPUT

At first this may get tedious, but once you get more experience, you won't open the LPC40xx.h file very

often. This is the preferred way to access registers in this course.

 LPC_GPIO1->FIODIR |= (1 << 0);

 // Set 0th bit, setting Pin 0.0 to high

 LPC_GPIO1->FIOPIN &= ~(1 << 0);

 for(volatile uint32_t i = 0; i < 1000000; i++);

 // Clear 0th bit, setting Pin 0.0 to low

 LPC_GPIO1->FIOPIN |= (1 << 0);

 return 0;}

On occasions, the names of registers in the user manual are not exactly the same in this file.

?

To be able to General Purpose Input Output (GPIO), to generate digital output signals and to read input

signals. Digital outputs can be used as control signals to other hardware, to transmit information, to

signal another computer/controller, to activate a switch or, with sufficient current, to turn on or off LEDs

or to make a buzzer sound.

Below will be a discussion on using GPIO to drive an LED.

Although the interface may seem simple, you do need to consider hardware design and know some of

the fundamental of electricity. There are a couple of goals for us:

No hardware damage if faulty firmware is written.

Circuit should prevent excess amount of current to avoid processor damage.

bit-masking in C

wire-wrapping or use of a breadboard

Fundamentals of electricity such as Ohm's law (V = IR) and how diodes work.

General Purpose Input Output

Objective

Required Background
You should know the following:

GPIO

Figure 1. Internal Design of a GPIO

GPIO stands for "General Purpose Input Output". Each pin can at least be used as an output or input.

In an output configuration, the pin voltage is either 0v or 3.3v. In input mode, we can read whether the

voltage is 0v or 3.3v.

You can locate a GPIO that you wish to use for a switch or an LED by first starting with the schematic of

the board. The schematic will show which pins are "available" because some of the microcontroller pins

may be used internally by your development board. After you locate a free pin, such as P2.0, then you

can look-up the microcontroller user manual to locate the memory that you can manipulate.

The hardware registers map to physical pins. If we want to attach our switch and the LED to our

Hardware Registers Coding

microcontroller's PORT0, then here are the relevant registers and their functionality :

LPC17xx

Port0

Registers

LPC_GPIO0-

>FIODIR

Direction

of

the

port

pins,

1 =

output

LPC_GPIO0-

>FIOPIN

Read:

Sensed

inputs

of

the

port

pins,

1 =

HIGH

Write:

Control

voltage

level

of

the

pin,

1 =

3.3v

LPC_GPIO0-

>FIOSET

Write

only:

Any

bits

written

1

are

OR'd

with

FIOPIN

LPC_GPIO0-

>FIOCLR

Write

only:

Any

bits

written

1

are

AND'd

with

FIOPIN

We will interface our switch to PORT0.2, or port zero's 3rd pin (counting from 0).

Note that the "inline" resistor is used such that if your GPIO is mis-configured as an OUTPUT pin,

hardware damage will not occur from badly written software.

Switch

Figure 2. Button Switch Circuit Schematic

// Set the direction of P0.2 to input

LPC_GPIO0->FIODIR &= ~(1 << 2);

// Now, simply read the 32-bit FIOPIN registers, which corresponds to

// 32 physical pins of PORT 0.

// Use AND logic to test if JUST the pin number 2 of port zero is set.

if (LPC_GPIO0->FIOPIN & (1 << 2))

{

 // Switch is logical HIGH

}

else

{

 // Switch is logical LOW}

LED

We will interface our LED to PORT0.3, or port zero's 4th pin (counting from 0).

Given below are two configurations of an LED. Usually, the "sink" current is higher than "source", hence

the active-low configuration is used more often.

Figure 3. Active High LED circuit schematic

Figure 4. Active low LED circuit schematic

// Make direction of PORT0.3 as OUTPUT

LPC_GPIO0->FIODIR |= (1 << 3);

// Setting bit 3 to 1 of IOPIN will turn ON LED

// and resetting to 0 will turn OFF LED.

LPC_GPIO0->FIOPIN |= (1 << 3);

// An alternative way, is to use the FIOSET and FIOCLR registers (no OR logic needed)

LPC_GPIO0->FIOSET = (1 << 3);

// Likewise, reset to 0LPC_GPIO0->FIOCLR = (1 << 3);

Gain experience doing the following:

1. Manipulating a registers in order to access and control physical pins
2. Use implemented driver to sense input signals and control LEDs.

Test your knowledge by doing the following:

GPIO Lab Assignment

Objective

Assignment

Part 0. Basic GPIO Driver to blink an onboard LED

int main()

{

 // 1) Find and choose an onboard LED to manipluate.

 // 2) Use the schematic to figure out which pin it is connected to

 // 3) Use FIODIR to set that pin as an output

 while (true)

 {

 // 4) use FIOCLR to set the pin LOW, turning ON the LED

 LOG_INFO("Turning LED ON!");

 Delay(500); // Delay in milliseconds

 // 5) use FIOSET to set the pin HIGH, turning OFF the LED

 LOG_INFO("Turning LED OFF!");

 Delay(500);

 }

 return 0;}

Using the following class template

1. Implement ALL class methods.
2. All methods must function work as expected of their method name.
3. Must be able to handle pins in port 0, 1, and 2.

Part 1. Implement the LabGPIO Driver

#pragma once

#include <cstdint>

class LabGPIO

{

 public:

 enum class Direction : uint8_t

 {

 kInput = 0,

 kOutput = 1

 };

 enum class State : uint8_t

 {

 kLow = 0,

 kHigh = 1

 };

 /// You should not modify any hardware registers at this point

 /// You should store the port and pin using the constructor.

 ///

 /// @param port - port number between 0 and 5

 /// @param pin - pin number between 0 and 32

 constexpr LabGPIO(uint8_t port, uint8_t pin);

 /// Sets this GPIO as an input

 void SetAsInput();

 /// Sets this GPIO as an output

 void SetAsOutput();

 /// Sets this GPIO as an input

 /// @param output - true => output, false => set pin to input

The application is to use all 4 internal buttons to control the on board LEDs above them.

 void SetDirection(Direction direction);

 /// Set voltage of pin to HIGH

 void SetHigh();

 /// Set voltage of pin to LOW

 void SetLow();

 /// Set pin state to high or low depending on the input state parameter.

 /// Has no effect if the pin is set as "input".

 ///

 /// @param state - State::kHigh => set pin high, State::kLow => set pin low

 void set(State state);

 /// Should return the state of the pin (input or output, doesn't matter)

 ///

 /// @return level of pin high => true, low => false

 State Read();

 /// Should return the state of the pin (input or output, doesn't matter)

 ///

 /// @return level of pin high => true, low => false

 bool ReadBool();

 private:

 /// port, pin and any other variables should be placed here.

 /// NOTE: Pin state should NEVER be cached! Always check the hardware

 /// registers for the actual value of the pin.

};

Part 2. Use Driver for an application

int main(void)

{

 LabGpio button0(?, ?);

 LabGpio led0(?, ?);

 // Initialize button and led here

 while(true)

 {

 // Logic to read if button has been RELEASED and if so, TOGGLE LED state;

The code must read from the internal button. If a button is RELEASED, toggle the state of the LED.

Upload only relevant source files into canvas. A good example is: main.cpp, LabGPIO.hpp,

LabGPIO.cpp. See Canvas for rubric and grade breakdown.

 }

 return 0;}

Requirements:

You MUST NOT use any pre-existing library such as a GPIO class for this assignment.

?

You MAY USE LPC40xx.h as it is not a library but a list of registers mapped to the appropriate

locations.

?

Extra Credit

Add a flashy easter egg feature to your assignment, with your new found LED and switch

powers! The extra credit is subject to the instructor's, ISA's and TA's discretion about what is

worth the extra credit.

Consider using additional switches and/or LEDs.

?

