
To introduce what, why, when, and how to use Real Time Operating Systems (RTOS) as well as get you
started using it with the SJSU-Dev environment.
I would like to note that this page is mostly an aggregation of information from Wikipedia and the FreeRTOS
website.

They have services to make communicating with Networking devices and files systems possible without having
to understand how the hardware works. Operating systems may also have a means to multi-tasking by allow
multiple processes to share the CPU at a time. They may also have means for allowing processes to
communicate together.

An RTOS is an operating system that meant for real time applications. They typically have fewer services such
as the following:

Parallel Task Scheduler
Task communication (Queues or Mailboxes)
Task synchronization (Semaphores)

FreeRTOS & Tasks

Introduction to FreeRTOS

Objective

What is an OS?

Operating system (OS) is system software that manages computer hardware and
software resources and provides common services for computer programs. - Wikipedia“

Operating systems like Linux or Windows

What is an RTOS?

Why use an RTOS?

You do not need to use an RTOS to write good embedded software. At some point
though, as your application grows in size or complexity, the services of an RTOS might
become beneficial for one or more of the reasons listed below. These are not absolutes,
but opinion. As with everything else, selecting the right tools for the job in hand is an
important first step in any project.
In brief:

Abstract out timing information

The real time scheduler is effectively a piece of code that allows you to specify the
timing characteristics of your application - permitting greatly simplified, smaller (and
therefore easier to understand) application code.

Maintainability/Extensibility

Not having the timing information within your code allows for greater maintainability
and extensibility as there will be fewer interdependencies between your software
modules. Changing one module should not effect the temporal behavior of another
module (depending on the prioritization of your tasks). The software will also be less
susceptible to changes in the hardware. For example, code can be written such that it
is temporally unaffected by a change in the processor frequency (within reasonable
limits).

Modularity

Organizing your application as a set of autonomous tasks permits more effective
modularity. Tasks should be loosely coupled and functionally cohesive units that
within
themselves execute in a sequential manner. For example, there will be no need to
break functions up into mini state machines to prevent them taking too long to
execute
to completion.

Cleaner interfaces

Well defined inter task communication interfaces facilitates design and team
development.

Easier testing (in some cases)

Task interfaces can be exercised without the need to add instrumentation that may
have changed the behavior of the module under test.

“

Code reuse

Greater modularity and less module interdependencies facilitates code reuse across
projects. The tasks themselves facilitate code reuse within a project. For an example
of the latter, consider an application that receives connections from a TCP/IP stack -
the same task code can be spawned to handle each connection - one task per
connection.

Improved efficiency?

Using FreeRTOS permits a task to block on events - be they temporal or external to
the system. This means that no time is wasted polling or checking timers when there
are actually no events that require processing. This can result in huge savings in
processor utilization. Code only executes when it needs to. Counter to that however
is
the need to run the RTOS tick and the time taken to switch between tasks. Whether
the saving outweighs the overhead or vice versa is dependent of the application.
Most
applications will run some form of tick anyway, so making use of this with a tick hook
function removes any additional overhead.

Idle time

It is easy to measure the processor loading when using FreeRTOS.org. Whenever
the
idle task is running you know that the processor has nothing else to do. The idle task
also provides a very simple and automatic method of placing the processor into a low
power mode.

Flexible interrupt handling

Deferring the processing triggered by an interrupt to the task level permits the
interrupt
handler itself to be very short - and for interrupts to remain enabled while the task
level
processing completes. Also, processing at the task level permits flexible
prioritization -
more so than might be achievable by using the priority assigned to each peripheral by
the hardware itself (depending on the architecture being used).

Mixed processing requirements

Simple design patterns can be used to achieve a mix of periodic, continuous and
event driven processing within your application. In addition, hard and soft real time
requirements can be met though the use of interrupt and task prioritisation.

Easier control over peripherals

Gatekeeper tasks facilitate serialization of access to peripherals - and provide a good

Think about the following system. Reasonable complex, right?

 ? Small code size.
 ? No reliance on third party source code.
 ? No RTOS RAM, ROM or processing overhead.
 ? Difficult to cater for complex timing requirements.
 ? Does not scale well without a large increase in complexity.
 ? Timing hard to evaluate or maintain due to the inter-dependencies between the different functions.

mutual exclusion mechanism.

Etcetera

- FreeRTOS Website (https://www.freertos.org/FAQWhat.html)

Design Scenario

Building a controllable assembly conveyor belt

Without a scheduler

http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/TaQcontrollable assembly-conveyor-belt-system.png
http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/TaQcontrollable assembly-conveyor-belt-system.png

 ? Simple, segmented, flexible, maintainable design with few inter-dependencies.
 ? Processor utilization is automatically switched from task to task on a most urgent need basis with no
explicit action required within the application source code.
 ? The event driven structure ensures that no CPU time is wasted polling for events that have not
occurred.
Processing is only performed when there is work needing to be done.
 * Power consumption can be reduced if the idle task places the processor into power save (sleep) mode,
but may also be wasted as the tick interrupt will sometimes wake the processor unnecessarily.
 * The kernel functionality will use processing resources. The extent of this will depend on the chosen
kernel tick frequency.
 ? This solution requires a lot of tasks, each of which require their own stack, and many of which require a
queue on which events can be received. This solution therefore uses a lot of RAM.
 ? Frequent context switching between tasks of the same priority will waste processor cycles.

A FreeRTOS task is a function that is added to the FreeRTOS scheduler using the xCreateTask() API call.

A task will have the following:

1. A Priority level
2. Memory allocation
3. Singular input parameter (optional)
4. A name
5. A handler (optional): A data structure that can be used to reference the task later.

A FreeRTOS task declaration and definition looks like the following:

With a scheduler

FreeRTOS Tasks

What is an FreeRTOS Task?

void vTaskCode(void * pvParameters)

{

 /* Grab Parameter */

 uint32_t c = (uint32_t)(pvParameters);

 /* Define Constants Here */

 const uint32_t COUNT_INCREMENT = 20;

 /* Define Local Variables */

 uint32_t counter = 0;

The highest priority ready tasks ALWAYS runs
If two or more have equal priority, then they are time sliced

Low priority tasks only get CPU allocation when:
All higher priority tasks are sleeping, blocked, or suspended

Tasks can sleep in various ways, a few are the following:
Explicit "task sleep" using API call vTaskDelay();
Sleeping on a semaphore
Sleeping on an empty queue (reading)
Sleeping on a full queue (writing)

The following code example shows how to use xTaskCreate() and how to start the scheduler using
vTaskStartScheduler()

 /* Initialization Code */

 initTIMER();

 /* Code Loop */

 while(1)

 {

 /* Insert Loop Code */

 }

 /* Only necessary if above loop has a condition */

 xTaskDelete(NULL);}

Rules for an RTOS Task

Adding a Task to the Scheduler and Starting
the Scheduler

int main(int argc, char const *argv[])

{

 //// You may need to change this value.

 const uint32_t STACK_SIZE = 128;

 xReturned = xTaskCreate(

 vTaskCode, /* Function that implements the task. */

 "NAME", /* Text name for the task. */

 STACK_SIZE, /* Stack size in words, not bytes. */

 (void *) 1, /* Parameter passed into the task. */

In the above situation, the high priority task task never sleeps, so it is always running. In this situation where
the low priority task never gets CPU time, we consider that task to be starved.

In the above situation, the two tasks have the same priority, thus they share the CPU. The time each task is
allowed to run depends on the OS tick frequency. The OS Tick Frequency is the frequency that the
FreeRTOS scheduler is called in order to decide which task should run next. The OS Tick is a hardware
interrupt that calls the RTOS scheduler. Such a call to the scheduler is called a preemptive context switch.

 tskIDLE_PRIORITY,/* Priority at which the task is created. */

 &xHandle); /* Used to pass out the created task's handle. */

 /* Start Scheduler */

 vTaskStartScheduler();

 return 0;}

Task Priorities

High Priority and Low Priority tasks

Tasks of the same priority

http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/BSERTOS-Tasks-HL.png
http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/U42RTOS-Tasks-MM.png

When the RTOS scheduler switches from one task to another task, this is called a Context Switch.

In order for a task, or really any executable, to run, the following need to exist and be accessible and storable:

Program Counter (PC)
This holds the position for which line in your executable the CPU is currently executing.
Adding to it moves you one more instruction.
Changing it jumps you to another section of code.

Stack Pointer (SP)
This register holds the current position of the call stack, with regard to the currently executing program.
The stack holds information such as local variables for functions, return addresses and [sometimes]
function return values.

General Purpose Registers
These registers are to do computation.

In ARM:
R0 - R15

In MIPS:
$v0, $v1
$a0 - $a3
$t0 - $t7
$s0 - $s7
$t8 - $t9

Intel 8086
AX
BX
CX
DX
SI
DI
BP

1. A hardware timer interrupt or repetitive interrupt is required for this preemptive context switch.

1. This is independent from an RTOS
2. Typically 1ms or 10ms

2. The OS needs hardware capability to have a chance to STOP synchronous software flow and enter the
OS “tick” interrupt.

1. This is called the "Operating System Kernel Interrupt"
2. We will refer to this as the OS Tick ISR (interrupt service routine)

Context Switching

What needs to be stored for a Context switch to happen

How does Preemptive Context Switch work?

3. Timer interrupt calls RTOS Scheduler

1. RTOS will store the previous PC, SP, and registers for that task.
2. Scheduler picks the highest priority task that is ready to run.
3. Scheduler places that task's PC, SP, and registers into the CPU.
4. Scheduler interrupt returns, and the newly chosen task runs as if it never stopped.

NOTE: Context switching takes time. The reason why most OS ticks are 1ms to 10ms, because any
shorter means that there is less time for your code to run. If a context switch takes 100uS to do, then
with a OS tick of 1ms, your code can only run for 900uS. If an OS Tick is only 150uS, then your code
may only have enough time to run a few instructions. You spend more CPU time context switching then
you do performing actual work.

?

Revision #1

Created 1 week ago by Khalil Estell

Updated 1 week ago by Khalil Estell

http://books.socialledge.com/user/5
http://books.socialledge.com/user/5

