
To be able to General Purpose Input Output (GPIO), to generate digital output signals and to read input
signals. Digital outputs can be used as control signals to other hardware, to transmit information, to signal
another computer/controller, to activate a switch or, with sufficient current, to turn on or off LEDs or to make a
buzzer sound.

Below will be a discussion on using GPIO to drive an LED.

Although the interface may seem simple, you do need to consider hardware design and know some of the
fundamental of electricity. There are a couple of goals for us:

No hardware damage if faulty firmware is written.
Circuit should prevent excess amount of current to avoid processor damage.

bit-masking in C
wire-wrapping or use of a breadboard
Fundamentals of electricity such as Ohm's law (V = IR) and how diodes work.

General Purpose Input Output

Objective

Required Background
You should know the following:

GPIO

Figure 1. Internal Design of a GPIO

GPIO stands for "General Purpose Input Output". Each pin can at least be used as an output or input. In an
output configuration, the pin voltage is either 0v or 3.3v. In input mode, we can read whether the voltage is 0v
or 3.3v.

You can locate a GPIO that you wish to use for a switch or an LED by first starting with the schematic of the
board. The schematic will show which pins are "available" because some of the microcontroller pins may be
used internally by your development board. After you locate a free pin, such as P2.0, then you can look-up the
microcontroller user manual to locate the memory that you can manipulate.

Hardware Registers Coding

The hardware registers map to physical pins. If we want to attach our switch and the LED to our
microcontroller's PORT0, then here are the relevant registers and their functionality :

LPC17xx Port0 Registers

LPC_GPIO0->FIODIR Direction of the port pins, 1 = output

LPC_GPIO0->FIOPIN
Read: Sensed inputs of the port pins, 1 = HIGH
Write: Control voltage level of the pin, 1 = 3.3v

LPC_GPIO0->FIOSET Write only: Any bits written 1 are OR'd with FIOPIN

LPC_GPIO0->FIOCLR Write only: Any bits written 1 are AND'd with FIOPIN

We will interface our switch to PORT0.2, or port zero's 3rd pin (counting from 0).

Note that the "inline" resistor is used such that if your GPIO is mis-configured as an OUTPUT pin, hardware
damage will not occur from badly written software.

Switch

Figure 2. Button Switch Circuit Schematic

We will interface our LED to PORT0.3, or port zero's 4th pin (counting from 0).

// Set the direction of P0.2 to input

LPC_GPIO0->FIODIR &= ~(1 << 2);

// Now, simply read the 32-bit FIOPIN registers, which corresponds to

// 32 physical pins of PORT 0.

// Use AND logic to test if JUST the pin number 2 of port zero is set.

if (LPC_GPIO0->FIOPIN & (1 << 2))

{

 // Switch is logical HIGH

}

else

{

 // Switch is logical LOW}

LED

Given below are two configurations of an LED. Usually, the "sink" current is higher than "source", hence the
active-low configuration is used more often.

Figure 3. Active High LED circuit schematic

Figure 4. Active low LED circuit schematic

// Make direction of PORT0.3 as OUTPUT

LPC_GPIO0->FIODIR |= (1 << 3);

// Setting bit 3 to 1 of IOPIN will turn ON LED

// and resetting to 0 will turn OFF LED.

LPC_GPIO0->FIOPIN |= (1 << 3);

// An alternative way, is to use the FIOSET and FIOCLR registers (no OR logic needed)

LPC_GPIO0->FIOSET = (1 << 3);

// Likewise, reset to 0LPC_GPIO0->FIOCLR = (1 << 3);

Revision #1

Created 5 years ago by Khalil Estell

Updated 5 years ago by Khalil Estell

http://books.socialledge.com/user/5
http://books.socialledge.com/user/5

