12C (Inter-Integrated Circuit)
What is 12C

I2C is pronounced "eye-squared see". It is also known as "TWI" because of the initial patent issues of this BUS.
This is a popular, low throughput (100-1000Khz), half-duplex BUS that only uses two wires regardless of how
many devices are on this BUS. Many sensors use this BUS because of its ease of adding to a system.

Master_0L Slave_0O2 5lave_0O3

Ox XX ’ Ox2E

Oxka& EvV

Ox34 Ox XX

LSlave_01 Master_0O2

Figure x. of some devices connected up to an 12C bus

Pins of 12C

There are two pins for 12C:

e SCL: Serial clock pin
e SDA: Serial data pin

The clock line is usually controlled by the Master with the exception that the slave may pull it low to indicate to

the master that it is not ready to send data.

The data line is bi-directional and is controlled by the Master while sending data, and by the slave when it
sends data back after a repeat-start condition described below.

Open-Collector/Open-Drain BUS

I2C is an open-collector BUS, which means that no device shall have the capability of internally connecting
either SDA or SCL wires to power source. The communication wires are instead connected to the power
source through a "pull-up” resistor. When a device wants to communicate, it simply lets go of the wire for it to
go back to logical "high" or "1" or it can connect it to ground to indicate logical "0". This achieves safe
operation of the bus (no case of short circuit), even if a device incorrectly assumes control of the bus.

- -9

| — |
|

pull-up pull-up
resistor resistor

—§ —& — — SDA
1 2C bus
SCL
SDA SCL
LPCXXXX OTHER DEVICE WITH OTHER DEVICE WITH
| 2C INTERFACE | 22 INTERFACE

Fig 84. [2C-bus configuration

Figure x. Devices connected to 12C bus.

*op
ﬁﬁp Fp

- SDA

SCL
ClDEI{J DataJ
Cut Cut

Clock Data
In Iq]

ClDEI{J DataJ
Cut Cut

Clock Data
In Iq]

:

Cievice 1 Cevice 2

Figure x. I12C device pin output stage.

Pull-up resistor

Using a smaller pull-up can acheive higher speeds, but then each device must have the capability of sinking
that much more current. For example, with a 5v BUS, and 1K pull-up, each device must be able to sink 5SmA.

Why Use 12C

Pros

¢ |O/Pin Count:
o 2 pins bus regardless of the number of devices.
e Synchronous:
o No need for agreed timing before hand
e Multi-Master
o Possible to have multiple masters on a 12C bus
e Multi-slave:
o 7-bit address allows up to an absolute maximum of 119 devices (because 8 addresses are reserved)
o You can increase this number using 12C bus multiplexers

Cons

e Slow Speed:
o Typical I12C devices have a maximum speed of 400kHz
o Some devices can sense speeds up to 1000kHz or more
e Half-Duplex:
o Only one device can talk at a time
e Complex State Machine:
o Requires a rather large and complex state machine in order to handle communication

e Master Only Control:
o Only a master can drive the bus
o Exception to that rule is that a slave can stop stop the clock if it needs to hold the master in a wait state
e Hardware Signal Protocol Overhead
o This protocol includes quite a few bits, not associated with data to handle routing and handshaking. This
slows the bus throughput even further

Protocol Information

I2C was designed to be able to read and write memory on a slave device. The protocol may be complicated,
but a typical "transaction" involving read or write of a register on a slave device is simple granted a "sunny-day
scenario™ in which no errors occur.

I2C at its foundation is about sending and receiving bytes, but there is a layer of unofficial protocol about how
the bytes are interpreted. For instance, for an 12C write transaction, the master sends three bytes and 99% of
the cases, they are interpreted like the following:

1. Device Address
2. Device Register
3. Data

The code samples below illustrates 12C transaction split into functions, but this is the wrong way of
writing an 12C driver. An 12C driver should be "transaction-based" and the entire transfer should be
carried out using a state machine. The idea is to design your software to walk the 12C hardware through
its state to complete an 12C transfer.

Signal Timing Diagram

L7/ S AN I W AN O

151 1P
o [[| | [[1 I | .3
START ADDRESS RW ACK DATA ACK DATA ACK STOP
condition condition

Figure x. I2C communication timing diagram.

Write Transaction

S SLAVE ADDRESS RW=0 A DATA A DATA AlA P

n bytes data transmitted

A = Acknowledge (SDA low)

‘A = Not acknowledge (SDA high)
S = START condition

P = STOP condition

O] from Masterto Slave
[J from Slave to Master

Fig 85. Format in the Master Transmitter mode

Figure x. Master Transmit format

The master always initiates the transfer, and the device reading the data should always "ACK" the byte. For
example, when the master sends the 8-bit address after the START condition, then the addressed slave should
ACK the 9th bit (pull the line LOW). Likewise, when the master sends the first byte after the address, the slave
should ACK that byte if it wishes to continue the transfer.

A typical 12C write is to be able to write a register or memory address on a slave device. Here are the steps:

1. Master sends START condition followed by device address.
Device that is addressed should then "ACK" using the 9th bit.
2. Master sends device's "memory address" (1 or more bytes).
Each byte should be ACK'd by the addressed slave.
3. Master sends the data to write (1 or more bytes).
Each byte should be ACK'd by the addressed slave.
4. Master sends the STOP condition.

To maximize throughput and avoid having to send three 12C bytes for each slave memory write, the memory
address is considered "starting address". If we continue to write data, we will end up writing data to M, M+1,
M+2 etc.

The ideal way of writing an 12C driver is one that is able to carry out an entire transaction given by the function
below.

NOTE: that the function only shows the different actions hardware should take to carry out the
transaction, but your software will be a state machine.

void i2c write slave reg(void)
{
// This will accomplish this:

// slave addr[slave reg] = data;

i2c_start();
i2c_write(slave_addr);
i2c write(slave reg); // This is "M" for "memory address of the slave"

i2c write(data);

/* Optionaly write more data to slave reg+l, slave reg+2 etc. */
// i2c_write(data); /* M + 1 */
// i2c_write(data); /* M + 2 */

i2c_stop();}

Read Transaction

An 12C read is slightly more complex and involves more protocol to follow. What we have to do is switch from
"write-mode" to "read-mode" by sending a repeat start, but this time with an ODD address. This transition
provides the protocol to allow the slave device to start to control the data line. You can consider an 12C even
address being "write-mode" and 12C odd address being "read-mode".

When the master enters the "read mode" after transmitting the read address after a repeat-start, the master
begins to "ACK" each byte that the slave sends. When the master "NACKs", it is an indication to the slave that
it doesn't want to read anymore bytes from the slave.

Again, the function shows what we want to accomplish. The actual driver should use state machine
logic to carry-out the entire transaction.

void i2c_read slave reg(void)
{

i2c start();

i2c write(slave addr);

i2c write(slave regq);

i2c_start(); // Repeat start

i2c write(slave addr | 0x01); // 0dd address (last byte Master writes, then Slave begins to control

char data = i2c_read(0); // NACK last byte
i2c stop();

}

void i2c read multiple slave reg(void)

{

i2c_start();
i2c_write(slave_addr);

i2c write(slave reg);

// This will accomplish this:
// dl1 = slave addr[slave regl;
// d2
// d3
i2c start();

slave addr[slave reg + 1];

slave addr[slave reg + 2];

i2c write(slave addr | 0x01);

char dl = i2c read(1); // ACK
char d2 = i2c _read(1); // ACK
char d3 = i2c_read(0); // NACK last byte

i2c_stop();}

12C Slave State Machine Planning

Before you jump right into the assignment, do the following:

e Read and understand how an I2C master performs slave register read and write operation

Look at existing code to see how the master operation handles the 12C state machine function.
e Next to each of the master state, determine which slave state is entered when the master enters its state
e Determine how your slave memory or registers will be read or written

In each of the states given in the diagrams below, your software should take the step, and the hardware will go
to the next state granted that no errors occur. To implement this in your software, you should:

1. Perform the planned action after observing the current state
2. Clear the "SI" (state change) bit for HW to take the next step
3. The HW will then take the next step, and trigger the interrupt when the step is complete

Master Write

In the diagram below, note that when the master sends the "R#", which is the register to write, then the slave
state machine should save this data byte as it's INDEX location. Upon the next data byte, the indexed data byte
should be written.

Stop here and do the following:

1. Check I2c::I2cHandler()
2. Compare the code to the state diagram below

—For 1 Byte—
Start [SLA+W i ACK | R# | ACK | Data | ACK | Stop
Oy ST ARy R
: Ox08 ! : Ox18 ! ' Ox28 ! ' 0x28 !
~ L i‘ L .I ’ .I ’
R#t = Data—
RIN]=Byte—————
__________ I R kit
5 Start [SLA+W ! ACK | R# | ACK | ByteD | ACK |ByteN | ACK | Stop
’ P :';d'-." :';v'-'.' il L
" * X " X " k- K ks *
' Ox08 } : Ox18 } ' 0x28 } \ 0x28 } ' 0x28 }
"0‘ . af ‘h‘ . al ‘h‘ . o hh‘ . P ‘_ . af
R[0]=Byte0

I2C Master Write Transaction

http://www.socialledge.com/sjsu/index.php?title=File:Tutorial_i2c_master_write_state.png

MT
; I I;‘ ?"C |
transmission
g — 8 a8 :W : A D-:'I'.l : LS B
Racabhar | I ¥
raxt transfar 7)
started with a
¥ | 5 AW
Fapaaind Start i 1
[
- '
Ackrowiadga T _ i |
—— :D B | e | A
the Sl 1 1 1
@ v
Y o Masiar
Mok rocatm
| moda,
reeoaivnd after o 1A B artny
Dwata bytn L = MR
Y l
arbirtion lost I — | —_—
e e i e
Data tytn ! 1= ' — -
l
arbimtion kost i —_—
and cifar Mastor
nidmssed as =:> : A oontinues
Slmva —_—
QL O C gl
states in Slave mode
from Mastar o Slava
from Slave o Mastar
FA
n:“ : any numbar of datn bytes and Sl associaiod Acknowiodge bits
F 1
!
@ this numbar joontained in 25TA) cormesponds to a dafined staie of ta
FC bus
Fig 94. Format and states in the Master Transmitter mode

Section 19.9.1 in LPC17xx User Manual

Master Read

In the diagram below, the master will write the index location (the first data byte), and then perform a repeat
start. After that, you should start returning your indexed data bytes.

—For Last Byte—)
start | siaew DR s RRRR RePest| ¢ ..c
g g Start
e ey e e
" “ " “ " L [] “
' 0x08 } SER ' ox28 } Ox10 ¥
“ L “ L “ “‘ "

Data = R[0]

http://www.socialledge.com/sjsu/index.php?title=File:Tutorial_i2c_master_read_state.png

T Ay
suocassiul - | | ry T I -
Iransmiesior E-] SLA I A | & DATA | A DATA | P
a Slave 1 P I
ot transtar 7 i
startad with a
- 1 B I
Fiopmind Start 2 == D
bk Acknawladge i _ 1
recorend aftor tha I A = I w1
Slave addrass 1 [
hm}
tmnsmit
mada, aniry
= MT
L
arbimion lost in i — = T I
i el o :D | AOET | other Mastar i A ciar Masior
Acknowiedga bit | confinues: | continuas
—_— _
arbimtion kst i —_—
arl midraemad | oA athar Mastar
a5 Slave I Gontim
——
o cormspanding
EEE—> i
from Mastor to Sl
from Siave to Masior
4
DATA :A. any nsmbar of data byies and their assoocinbed
B i Ackrowiadga bits
. thiss numbar [contained in ESTA] coresponds o o defined sinte of
ths PG bus:
Fig %3. Format and states in the Master Receiver mode

Section 19.9.2 in LPC17xx User Manual 12C Master transmitter statemachine

Revision #2
Created 1 year ago by Khalil Estell
Updated 1 year ago by Khalil Estell

http://books.socialledge.com/user/5
http://books.socialledge.com/user/5

