
Get hands on experience working with and understanding how I2C works by implementing an I2C slave device.

The I2C master driver is already implemented in SJSU-Dev2.
Study the existing I2C code: i2c.hpp file and extend it to handler slave mode operation.
Flashing the example project CommandLine on to the board (completely unmodified) and connect it to your
2nd Slave Board which will contain your i2c slave driver.

On your master board, you can just use the i2c terminal command to read and write to the I2C
registers of a slave device.

See help for the help about the command

1. Read over the I2C chapter and the various registers it contains. You may ignore the DMA registers. In
order to grasp the amount of information in the chapter, you may need to read it multiple times.

2. Draw out the state machine outlined in the chapter's state diagram and truth table for yourself.

In this Part 0 of this assignment, your objective is to simply to initialize your I2C slave to get its first state
interrupt to fire.

1. Add your InitializeAsSlave() method
2. Add the slave address recognized state into your I2C slave driver and print a message when you hit this

state inside the ISR.
3. Connect this Master Board to the Slave Board by wire-wrapping the I2C SCL/SDA wires together.
4.5. To test that your slave driver initialize is working, invoke i2c discover on the master board. Your slave

board's address will appear.

I2C Slave Lab Assignment

Objective

Assignment

Part 0: Read the I2C Chapter

IGNORE THE Software Implementation of the I2C chapter. It is not correct and does not match the
proper information laid out in the state diagram and truth tables.

?Part 1: Get I2C Slave Interrupt to fire

When you connect the two boards to I2C There will be two of each sensor with the same address,
which too is sort of okay. For example, the temperature sensor at the same address (from the 2
boards).

?

#include <cstdint>

#include <cstdio>

#include "L1_Drivers/i2c.hpp"

// Slave Board sample code reference

int main(void)

{

 // Create I2c object (defaults to I2C2)

 I2c i2c;

 // Pick any address other than an existing ones on the board. Use `i2c discover` to see what those are.

 const uint8_t slaveAddr = 0xC0;

 // Our devices read/write buffer (This is the memory your master board will read/write)

 volatile uint8_t buffer[256] = { 0 };

 // I2C is already initialized before main(), so you will have to add initSlave() to i2c base class for your slave driver

 i2c.InitializeSlave(slaveAddr, buffer, sizeof(buffer));

 // I2C interrupt will (should) modify our buffer.

 // So monitor the buffer, and print and/or light up LEDs

 // ie: If buffer[0] == 0, then LED ON, else LED OFF

 uint8_t prev = buffer[0];

 while(true)

 {

 if (prev != buffer[0])

 {

 printf("buffer[0] changed from 0x%08X to 0x%08X by the other Master Board\n", prev, buffer[0]);

 prev = buffer[0];

 }

 }

 return 0;}

Part 2: Implement I2C slave behavior in
I2CHandler

1. Using the state machine diagrams in the datasheet before you begin, make sure you fully understand the
slave states. The code you implement will need to follow the state machine guidelines exactly.

2. Extend I2C state machine to handle I2C slave operations.

See Canvas.

Extra Credit:

• Get multi byte read and write operation to work.
• Do something creative with your slave board since you have essentially memory mapped the slave
device over I2C. Maybe use buffer[0] to enable a blinking LED, and buffer[1] controls the blink
frequency? You can do a lot more. Just blinking the LEDs is not enough.

?

You may add printf statements to the I2C state machine code to identify what states you enter when the
Master Board is trying to do an I2C transaction.

?

Requirements

Revision #3

Created 1 month ago by Khalil Estell

Updated 1 week ago by Khalil Estell

http://books.socialledge.com/user/5
http://books.socialledge.com/user/5

