
Pin Selection and Pin Mode

ADC (Analog to Digital Converter)

PWM (Pulse Width Modulation)

Lab Assignment: ADC + PWM

Lab Assignment (in C): ADC + PWM

Lesson ADC + PWM

Know how to select a specific functionality of a given LPC17xx pin. Know how to select a pin mode.

Every GPIO pin of the LPC17xx is capable of other alternative functionalities. Pin selection is the

method by which a user is able to designate the functionality of any given pin. For example, GPIO Pin

0.0 can alternatively by used for CAN channel 1 receive, UART channel 3 transmit, and I2C channel 1

data line.

Figure 1A. LPC17xx User Manual PINSEL0

Pin Selection and Pin Mode

Objective

Pin Selection

Figure 1B. I/O Pin Select Mux (from LPC2148, for illustration purposes only)

In order to select the SDA2 functionality of pin 0.10, one must set bits 21 & 20 of PINSEL0 register to 1

& 0 respectively.

The LPC17xx has several registers dedicated to setting a pin's mode. Mode refers to enabling/disabling

pull up/down resistors as well as open drain configuration. PINMODE registers allow users to enable a

pull-up (00), enable pull up and pull down (01), disable pull up and pull down (10), and enable pull down

(11). PINMODE_OD registers allow users to enable/disable open drain mode.

// Using the memory address from the datasheet

*(0x4002C000) &= ~(0x3 << 20);		// Clear bits 20 & 21

*(0x4002C000) |= (0x2 << 20);		// Set bit 21

// Using LPC17xx.h pointers

LPC_PINCON->PINSEL0 &= ~(0x3 << 20);		// Clear bits 20 & 21

LPC_PINCON->PINSEL0 |= (0x2 << 20);			// Set bit 21

Pin Mode

Figure 2. LPC17xx User Manual PINMODE & PINMODE_OD

Figure 3. LPC17xx User Manual PINMODE0

Figure 4. LPC17xx User Manual PINMODE_OD0

For example, if one desires to configure pin 0.09 to enable a pull-up resistor and open drain mode, one

must clear bits 18 & 19 of PINMODE0 register, and set bit 9 of register PINMODE_OD0.

// Using the memory address from the datasheet

*(0x4002C040) &= ~(0x3 << 18);		// Clear bits 18 & 19

*(0x4002C068) |= (0x1 << 9);		// Set bit 9

// Using LPC17xx.h pointers

LPC_PINCON->PINMODE0 &= ~(0x3 << 18);		// Clear bits 18 & 19

LPC_PINCON->PINMODE_OD0 |= (0x1 << 9);		// Set bit 9

You may find it helpful to automate register setting and/or clearing. Per our Coding Standards,

inline functions should be used (not Macros).

?

http://cmpe.kammce.io/books/cmpe-146/page/course-coding-standards#bkmrk-constexpr-functions-

Figure 5. LPC17xx Pin Registers & Circuit (credit:

https://sites.google.com/site/johnkneenmicrocontrollers/input_output/io_1768)

https://sites.google.com/site/johnkneenmicrocontrollers/input_output/io_1768

To learn about the use of ADCs, their different types, their related parameters, and how to set up an

ADC driver for the LPC17xx.

An Analog to Digital Converter is needed whenever one needs to interface a digital system with an

analog device. For example, if one needs to read the voltage across a resistor, and use the value within

an algorithm running on the SJOne board, an ADC circuit is needed to convert the analog voltage to a

discrete digital value. Luckily, the LPC17xx, like most microcontrollers, includes an ADC circuit that we

can utilize.

The simplest and fastest ADC circuit relies on a series of comparators that compare the input voltage to

a range of voltage reference values. The digital output of the comparators is wired to a priority encoder.

The output of the priority encoder represents the binary value of the input voltage.

Note that the number of bits of the binary output (n) requires 2n comparators. Therefore, the circuit

complexity grows exponentially with respect to the number of bits used to represent the converted value

(resolution).

ADC (Analog to Digital

Converter)

Objective

What does ADC accomplish?

Different types of ADC circuits

Flash ADC

Figure 1. Flash ADC Circuit (credit: allaboutcircuits.com)

Figure 2. Flash ADC Timing (credit: allaboutcircuits.com)

http://35.197.33.68:8080/uploads/images/gallery/2018-01-Jan/flash_adc_circuit.png

This type of ADC utilizes an up counter, a comparator, a DAC, and a register. DACs (Digital Analog

Converters), as their name suggests, perform the inverse operation of an ADC, i.e. They convert a

binary input into an analog voltage output. The up counter starts at zero and counts up synchronously.

The output of the counter is wired to the DAC. The analog output of the DAC is compared to the analog

input signal. As long as the comparator indicates that the input voltage is larger than the DAC's value,

the counter continues to increment. Eventually, the DAC's output will exceed the input voltage, and the

comparator will activate the counter's reset signal as well as the register's load signal. The register's

output represents the binary value of the input analog signal.

Note that because the counter starts from zero with every sample, the time it takes the circuit to

produce the digital output is inconsistent.

Figure 3. Digital Ramp ADC Circuit (credit: allaboutcircuits.com)

Digital Ramp ADC

Figure 4a. Digital Ramp ADC Timing (credit: allaboutcircuits.com)

Figure 4b. Digital Ramp ADC Timing Variance (credit: allaboutcircuits.com)

A successive approximation ADC works very similarly to a digital ramp ADC, except it utilizes a

successive approximation register (SAR) in place of the counter. The SAR sets each bit from MSB to

LSB according to its greater/less than logic input signal.

This type of ADC is more popular than flash and digital ramp due to its consistent timing and relatively

scalable design.

Successive Approximation ADC

Figure 5. Successive Approximation ADC Circuit (credit: allaboutcircuits.com)

Figure 6. Successive Approximation ADC Timing (credit: allaboutcircuits.com)

Tracking ADC

A Tracking ADC works similarly to the Digital Ramp ADC, except instead of an up counter, it utilizes an

up-down counter. The output of the comparator determines whether the counter increments or

decrements. It doesn't use a register to hold the processed value since it's constantly tracing the input

value.

Note that this type of ADC does not respond well to large changes of the input analog signal.

Additionally, it suffers from constantly going over and under the input value. This is known as bit bobble.

Figure 7. Tracking ADC Circuit (credit: allaboutcircuits.com)

Figure 8. Tracking ADC Timing (credit: allaboutcircuits.com)

Besides Flash ADC, all previous ADC circuits rely on using DACs to convert an estimated digital value

to an analog one and compare it to the input signal. There are other types of ADC technologies that do

not use DACs. They rely on the known time it takes an RC circuit to discharge to match the input analog

signal. Single Slope, Dual Slope, and Delta-Sigma ADCs implement this concept.

This is typically the most-highlighted aspect of any ADC technology. Resolution refers to the number of

bits of the ADC's output. It's a measurement of how coarse/fine the converted value is. A four bit 5V

ADC offers 16 values for the voltage range 0 V to 5 V (i.e. roughly 312 mV per bit increment). A 10 bit

5V ADC offers 1024 values for the same voltage range (roughly 5 mV per bit increment).

This is simply the circuit's latency (i.e. the rate of converting an analog input signal to digital bits). The

highest frequency of an analog signal that a given ADC circuit is able to adequately capture is known as

DAC-free ADCs

ADC Parameters

Resolution

Sampling Frequency

Nyquist frequency. Nyquist frequency is equal to one-half of the circuits sampling frequency. Therefore,

to adequately convert an analog signal of frequency n Hz, one must have an ADC circuit with 2n Hz

sampling frequency. Otherwise, aliasing happens. Aliasing occurs when an ADC circuit samples an

input signal too slowly, thus producing an output signal that is not the true input signal, but rather an

alias of it.

Figure 9. ADC Aliasing

This is a measurement of how quickly an ADC's output is able to respond to a sudden change in input.

For example, flash and successive approximation ADCs are able to adjust relatively quickly to input

changes while tracking ADC struggles with large input changes.

This is a measurement of the range of voltages that an ADC circuit is able to capture and output. For

example, the LPC1758 has a range of 0V to 3.3V. Other ADCs may have bigger ranges or even

variable ranges that a user can select, such as this device: https://www.mouser.com/ds/2/609/AD7327-

EP-916882.pdf

This is a measurement of the systematic error of any given ADC circuit. This is measured by comparing

Step Recovery

Range

Error

https://www.mouser.com/ds/2/609/AD7327-EP-916882.pdf
https://www.mouser.com/ds/2/609/AD7327-EP-916882.pdf

the actual input signal to its digital output equivalent. Note that, this error measurement is only valid

within the range of the ADC in question.

Figure 10. LPC17xx User Manual ADC Instructions

ADC Driver for LPC17xx

Figure 11. LPC17xx User Manual ADC Control Register

To learn about the use of PWM signals, their related parameters, and how to set up an ADC driver for

the LPC17xx.

A Pulse Width Modulation (PWM) signal is simply a digital signal that is on (high) for part of its period

and off (low) for the remainder of its period. If such signal is on half the time and off the other half, then

it's a square wave.

Figure 1. PWM Signal (credit: www.bvsystems.be)

PWM (Pulse Width

Modulation)

Objective

What is a PWM signal?

PWM Parameters

Duty Cycle

http://books.socialledge.com/uploads/images/gallery/2018-02-Feb/pwm.jpg

A duty cycle of a certain PWM signal is given as a percentage, and it represents the ratio of the signal

"on" time to the signal's full period. In other words, if the duty cycle of a signal is said to be 75%, it

means that this signal is high for 75% of its period and low for the remaining 25%. 100% duty cycle

implies a constantly high signal, and a 0% duty cycle implies a constantly grounded signal.

 The frequency of a PWM signal (just like any electrical signal) refers to the rate at which the signal

repeats per second. A 1 Hz signal repeats every 1 second while a 1 KHz signal repeats every 1

millisecond.

Figure 2. Parameters of a PWM signal

Generally speaking, a PWM signal is a way for a digital system to interface with an analog device.

DC Motors are controllable via a PWM signal. The duty cycle of the signal is typically linearly

proportional to the velocity of the motor. For example, a 60 RPM motor driven by a 50% duty cycle

PWM signal will rotate at a 30 RPM velocity. It's worth noting that such signal needs to run at a high

enough frequency (10 KHz for example) so the motor can rotate smoothly. A low-frequency PWM signal

(say 10 Hz) will result in an observable choppy motor motion.

Frequency

PWM Signal Applications

DC Motors

LEDs

http://books.socialledge.com/uploads/images/gallery/2018-02-Feb/pwm-signal.png

The brightness of an LED can be controlled via a reasonably high-frequency PWM signal. A 5V 50%

PWM signal applied to an LED will have the same brightness effect as a constant 2.5V signal applied to

the same LED.

 Servos are typically controlled by a 50 Hz PWM signal, where the duty cycle of the signal determines

the angle of the servo. Typically, the duty cycle ranges from 5% to 10%, causing the servo to rotate to

its smallest and largest angles, respectively.

Behind every PWM is a Peripheral (HW) counter (TC). For "Single Edge" PWM, when the counter

starts from zero, the output of the PWM (GPIO) can reset back to logical 1. Then, when the value of the

"Match Register (MR)" occurs, then the PWM output can set to logical 0. Therefore, the maximum limit

of the TC controls the frequency of the PWM signal, and the MR registers control the duty cycle.

Servos

PWM Driver for LPC17xx

Theory of Operation

This section demonstrates the LPC PWM operation in software. The LPC processor implements similar

code, but in the hardware.

Software PWM

void lpc_pwm(void)

{

 bool GPIO_PWM1 = true; // Hypothetical GPIO that this PWM channel controls

 uint32_t TC = 0; // Hardware counter

 uint32_t MR0 = 500; // TC resets when it matches this

 // Assumptions: SW instructions add no latency, and delay_us() is the only instruction that takes time

 while (1)

 {

 if (++TC >= MR0) {

 TC = 0;

 GPIO_PWM1 = true; // GPIO is HIGH on the reset of TC

 }

 if (TC >= MR1) {

 GPIO_PWM1 = false; // GPIO resets upon the match register

 }

What you are essentially trying to control is the PWM frequency and the PWM duty cycle. For instance,

a 50% duty cycle with just a 1Hz PWM will blink your LED once a second. But a 50% duty cycle 1Khz

signal will dim your LED to 50% of the total brightness it is capable of. There are "rules" that the PWM

module uses to alter a GPIO pin's output and these rules are what you are trying to understand . So

read up on "Rules of Single Edge Conrolled PWM" in your datasheet and overall the LPC PWM chapter

at minimum 10 times to understand it. You may skip the sections regarding "capture", and

"interrupts". Furthermore, to use the simplified PWM, you can use the Single Edge PWM rather than

the more complex Double Edge because the Single Edge edge PWM is controlled by a dedicated MR

register.

TC, MR0, MCR and PR: The Prescalar (PR) register controls the tick rate of the hardware counter that

can alter the frequency of your PWM. For instance, when the CPU clock is 10Mhz, and the PR = 9,

then the TC counts up at the rate of 10/(9+1) = 1 Mhz. Hence, the PR affects the frequency, but we still

need a "max count" to set the frequency with precision. So if the TC increments at 1Mhz, and MR0 is

set to 100, then you will have 1000Khz/100 = 10Khz PWM.

The MCR register controls what happens to the TC when a match occurs. The one subtle, but

important thing we need to do is that when the MR0 match occurs, we need the TC to reset to zero to

be able to use MR0 as a frequency control.

TCR and PCR: The PCR register enables the channels, so if you have PWM1.4 as an output, that

means you need to enable channel 4. The TCR register is a key register that will enable your PWM

module.

 // 1uS * 500 = 500uS, so 2Khz PWM

 delay_us(1);

 }}

Registers of relevance

Implement an ADC driver, implement a PWM driver, and design and implement an embedded

application, which uses both drivers.

This lab will utilize:

ADC Driver

PWM Driver

FreeRTOS Tasks

A potentiometer

An RGB LED

Channel 2 (Pin P0.25) already has Light Sensor connected to it.

Create just 1 task which reads the Light sensor value and prints it periodically.

While the task is running cover the light sensor and your task should print values <50.

Use the flash light on your phone on the light sensor and your task should print values >3500.

Lab Assignment: ADC + PWM

Objective

Assignment

Part 0: Implement basic ADC Driver and read Light Sensor
Values

void light_sensor_print_task(void *p)

{

	/*

 	* 1) Initial ADC setup (Power, clkselect, pinselect, clkdivider)

 * 2) Select ADC channel 2

 * 3) Enable burst mode

Using the following header file,

Implement adcDriver.cpp such that it implements all the methods in adcDriver.h below.

Every method must accomplish its task as indicated in the comments.

You may add any other methods to enhance the functionality of this driver.

It is recommended that you test your ADC driver with ADC_PIN_0_25 because it is connected to the

analog light sensor and this is probably the easiest way to test your driver.

 */

	while(1) {

 		uint16_t ls_val = adc_read_channel(2);

 		printf("Light Sensor value is %d\n", ls_val);

 		delay_ms(100);

	}}

Part 1: Implement an ADC Driver

For proper operation of the SJOne board, do NOT configure any pins as ADC except for 0.26,

1.30, 1.31

?

While in burst mode, do not wait for the "DONE" bit to get set.

?

#include <stdio.h>

#include "io.hpp"

class LabAdc

{

public:

 enum Pin

 {

 k0_25, // AD0.2 <-- Light Sensor -->

 k0_26, // AD0.3

 k1_30, // AD0.4

 k1_31, // AD0.5

 /* These ADC channels are compromised on the SJ-One,

 * hence you do not need to support them

 */

 // k0_23 = 0, // AD0.0

 // k0_24, // AD0.1

 // k0_3, // AD0.6

 // k0_2 // AD0.7

 };

 // Nothing needs to be done within the default constructor

 LabAdc();

 /**

 * 1) Powers up ADC peripheral

 * 2) Set peripheral clock

 * 2) Enable ADC

 * 3) Select ADC channels

 * 4) Enable burst mode

 */

 void AdcInitBurstMode();

 /**

 * 1) Selects ADC functionality of any of the ADC pins that are ADC capable

 *

 * @param pin is the LabAdc::Pin enumeration of the desired pin.

 *

 * WARNING: For proper operation of the SJOne board, do NOT configure any pins

 * as ADC except for 0.26, 1.31, 1.30

 */

 void AdcSelectPin(Pin pin);

 /**

 * 1) Returns the voltage reading of the 12bit register of a given ADC channel

 * You have to convert the ADC raw value to the voltage value

 * @param channel is the number (0 through 7) of the desired ADC channel.

 */

 float ReadAdcVoltageByChannel(uint8_t channel);

Using the following header file,

Implement pwmDriver.cpp such that it implements all the methods in pwmDriver.h below.

Every method must accomplish its task as indicated in the comments.

You may add any other methods to enhance the functionality of this driver.

It may be best to test the PWM driver by using a logic analyzer

};

Part 2: Implement a PWM Driver

#include <stdint.h>

class LabPwm

{

 public:

 enum Pin

 {

 k2_0, // PWM1.1

 k2_1, // PWM1.2

 k2_2, // PWM1.3

 k2_3, // PWM1.4

 k2_4, // PWM1.5

 k2_5, // PWM1.6

 };

 /// Nothing needs to be done within the default constructor

 LabPwm() {}

 /**

 * 1) Select PWM functionality on all PWM-able pins.

 */

 void PwmSelectAllPins();

	/**

 * 1) Select PWM functionality of pwm_pin_arg

 *

In order to demonstrate that both drivers function, you are required to interface a potentiometer and an

RGB LED to the SJOne board. The potentiometer ADC input shall control the duty cycle of the RGB

LED pwm outputs. Note that an RGB LED has three input pins that you will connect to three different

 * @param pwm_pin_arg is the PWM_PIN enumeration of the desired pin.

 */

 void PwmSelectPin(PWM_PIN pwm_pin_arg);

 /**

 * Initialize your PWM peripherals. See the notes here:

 * http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/pwm-%28pulse-width-modulation%29

 *

 * In general, you init the PWM peripheral, its frequency, and initialize your PWM channels and set them to 0% duty cycle

 *

 * @param frequency_Hz is the initial frequency in Hz.

 */

 void PwmInitSingleEdgeMode(uint32_t frequency_Hz);

	/**

 * 1) Convert duty_cycle_percentage to the appropriate match register value (depends on current frequency)

 * 2) Assign the above value to the appropriate MRn register (depends on pwm_pin_arg)

 *

 * @param pwm_pin_arg is the PWM_PIN enumeration of the desired pin.

 * @param duty_cycle_percentage is the desired duty cycle percentage.

 */

	void SetDutyCycle(PWM_PIN pwm_pin_arg, float duty_cycle_percentage);

	/**

 * Optional:

 * 1) Convert frequency_Hz to the appropriate match register value

 * 2) Assign the above value to MR0

 *

 * @param frequency_hz is the desired frequency of all pwm pins

 */

	void SetFrequency(uint32_t frequency_Hz);};

Part 3: Application

PWM output pins. You must use your own ADC and PWM drivers, as well as your own FreeRTOS task.

Using your own ADC Driver, read input voltage from a potentiometer

Print the voltage reading every 1s.

Using your own PWM Driver, drive an RGB LED.

Print the duty cycle of all three RGB pins every 1s.

The PWM output to the RGB LED must be dependent on the ADC input from the potentiometer.

By varying the potentiometer, you should be able to see changes in the color of the RGB Led.

Extra credit can be earned with an interesting/cool/creative RGB output.

?

Requirements

You don't need a periodic task for the PWM to work. Initialize the driver, set period and duty

cycle. PWM will start generating pulses immediately. You can vary the duty cycle of PWM inside

the ADC task.

?

Improve an ADC driver, and use an existing PWM driver to design and implement an embedded

application, which uses RTOS queues to communicate between tasks.

This lab will utilize:

ADC Driver

You will improve the driver functionality

You will use a potentiometer that controls the analog voltage feeding into an analog pin of your

microcontroller

PWM Driver

You will use an existing PWM Driver to control a GPIO

An led brightness will be controlled, or you can create multiple colors using an RGB LED

FreeRTOS Tasks

You will use FreeRTOS queues

Lab Assignment (in C): ADC

+ PWM
Objective

Assignment

Preparation:

Before you start the assignment, please read the following in your LPC User manual

(UM10562.PDF)

- Chapter 7: I/O configuration

- Chapter 32: ADC

?

1. Re-use the PWM driver

Study the pwm1.h and pwm1.c files under l3_drivers directory

2.
Locate the pins that the PWM peripheral can control at Table 84: FUNC values and pin functions

These are labeled as PWM1[x] where PWM1 is the peripheral, and [x] is a channel

So PWM1[2] means PWM1, channel 2

Now find which of these channels are available as a free pin on your SJ2 board and connect the

RGB led

Set the FUNC of the pin to use this GPIO as a PWM output

3. Initialize and use the PWM-1 driver

Initialize the PWM1 driver at a frequency of your choice (greater than 30Hz for human eyes)

Set the duty cycle and let the hardware do its job :)

4. You are finished with Part 0 if you can demonstrate control over an LED's brightness using the HW

based PWM method

Part 0: Use PWM1 driver to control a PWM output pin

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__pwm_block.png

Study adc.h and adc.c files in l3_drivers directory and correlate the code with the ADC

#include "pwm1.h"

#include "FreeRTOS.h"

#include "task.h"

void pwm_task(void *p) {

 pwm1__init_single_edge(1000);

 // Locate a GPIO pin that a PWM channel will control

 // NOTE You can use gpio__construct_with_function() API from gpio.h

 // TODO Write this function yourself

 pin_configure_pwm_channel_as_io_pin();

 // We only need to set PWM configuration once, and the HW will drive

 // the GPIO at 1000Hz, and control set its duty cycle to 50%

 pwm1__set_duty_cycle(PWM1__2_0, 50);

 // Continue to vary the duty cycle in the loop

 uint8_t percent = 0;

 while (1) {

 pwm1__set_duty_cycle(PWM1__2_0, percent);

 if (++percent > 100) {

 percent = 0;

 }

 vTaskDelay(100);

 }

}

void main(void) {

 xTaskCreate(pwm_task, ...);

 vTaskStartScheduler();}

Part 1: Alter the ADC driver to enable Burst Mode

peripheral by reading the LPC User Manual.

Do not skim over the driver, make sure you fully understand it.

Implement a new function called adc__enable_burst_mode() which will set the relevant bits in

Control Register (CR) to enable burst mode.

Identify a pin on the SJ2 board that is an ADC channel going into your ADC peripheral.

Reference the I/O pin map section in Table 84,85,86: FUNC values and pin functions

Connect a potentiometer to one of the ADC pins available on SJ2 board. Use the ADC driver and

implement a simple task to decode the potentiometer values and print them. Values printed should

range from 0-4095 for different positions of the potentiometer.

Note:

- The existing ADC driver is designed to work for non-burst mode

- You will need to write a routine that reads data while the ADC is in burst mode

- You will also create adc__get_channel_reading_with_burst_mode() that can return an ADC

channel reading

- Hint: You will need to set the right bits in CR register to enable burst-mode

?

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__adc_block.png

