Lesson ADC + PWM

Pin Selection and Pin Mode

ADC (Analog to Digital Converter)
PWM (Pulse Width Modulation)

Lab Assignment: ADC + PWM

® Lab Assignment (in C): ADC + PWM

Pin Selection and Pin Mode

Objective

Know how to select a specific functionality of a given LPC17xx pin. Know how to select a pin mode.

Pin Selection

Every GPIO pin of the LPC17xx is capable of other alternative functionalities. Pin selection is the
method by which a user is able to designate the functionality of any given pin. For example, GPIO Pin

0.0 can alte Table 79. Pin function select register 0 (PINSELD - address 0x4002 C000) bit description 1annel 1
data line. PINSELO Pin Function when Function when 01 Function Function Reset
name 00 when 10 when 11 value
1:0 FO.0 GPIO Port 0.0 RDA1 TXD3 SDAA1 00
3:2 P01 GPIO Port0.1 TD1 RXD3 SCL1 00
5:4 FO.2 GPIO Port 0.2 TXDO ADO.T Reserved 00
76 F0.3 GPIO Port 0.3 RXDO ADD.G Reserved 00
9.8 P04l GPIOPort04 I12SRX_CLK RD2 CAP2.0 00
11:10 PoSll GPIOPort05 12SRX_WS TDZ2 CAP2 .1 00
1312 P06 GPIOPort 0.6 |12SRX_SDA SSEL1 MATZ2.0 00
1514 FO.7 GPIO Port 0.7 1258TX_CLK SCK1 MATZ2 1 00
1716 F0.8 GPIO Port 0.8 12STX_WS MISO1 MAT2.2 00
19:18 F0.9 GPIO Port 0.9 12STX_SDA MOSI MATZ2.3 00
21:20 P00 GPIO Port0.10 TXD2 SDAZ MAT3.0 00
23:22 F0O11 GPIOPort0.11 RXD2 sSCL2 MAT3.1 00
20:24 - Reserved Reserved Reserved Reserved 0
31:30 P0.15 GPIO Port0.15 TXD1 SCKD SCK 00

Figure 1A. LPC17xx User Manual PINSELO

| 1

: MUX :

: P01 — l

I i

; R0 — 21
: A ' RuDD
| PWM3 — i)

i i

! EINTO —— J

: PINSELD :

: 01 :

| 31 30 3 21 0 |

Figure 1B. I/O Pin Select Mux (from LPC2148, for illustration purposes only)

In order to select the SDA2 functionality of pin 0.10, one must set bits 21 & 20 of PINSELO register to 1
& 0 respectively.

// Using the memory address from the datasheet
*(0x4002C000) &= ~(0x3 << 20);[1// Clear bits 20 & 21
*(0x4002C000) |= (0x2 << 20);[)// Set bit 21

// Using LPC17xx.h pointers

LPC PINCON->PINSELO &= ~(0x3 << 20);[1)// Clear bits 20 & 21
LPC PINCON->PINSELO |= (0x2 << 20);[I1)// Set bit 21

Pin Mode

The LPC17xx has several registers dedicated to setting a pin's mode. Mode refers to enabling/disabling
pull up/down resistors as well as open drain configuration. PINMODE registers allow users to enable a
pull-up (00), enable pull up and pull down (01), disable pull up and pull down (10), and enable pull down
(11). PINMODE_QOD registers allow users to enable/disable open drain mode.

PINMODED Pin mode select register 0 RW 0
PINMODE1 Pin mode select register 1 R]
PINMODEZ Pin mode select register 2 RW 0
PINMODE3 Fin mode select register 3. R]
PINMODE4 Pin mode select register 4 RW 0
PINMODES Pin mode select register 5 R]
PINMODES Pin mode select register 8 RW 0
PINMODET Pin mode select register 7 R]
PINMODES Pin mode select register 9 RW 0
PINMODE_ODO Open drain mode control register 0 R]
PINMODE_OD1 Open drain mode control register 1 RW 0
PINMODE_OD2 Open drain mode control register 2 R]
PINMODE_OD3 Open drain mode control register 3 RW 0
PINMODE_OD4 Open drain mode control register 4 R]

0x4002 CO40
0x4002 CO44
0x4002 CO48
0x4002 CO4C
0x4002 CO50
0x4002 CO54
0x4002 CO58
0x4002 CO5C
0x4002 COB4
0x4002 COGS
0x4002 COGC
0x4002 COTO
0x4002 COT4
0x4002 COTS

Table 87. Pin Mode select register 0 (PINMODED - address 0x4002 C040) bit description

PINMODEOD Symbol

1:0

32
5.4
76
9:8
11:10
13:12
15:14
17:16
19:18
21:20
23:22
29:24
31:30

PO.OOMODE

PO.OTMODE
PO.0ZMODE
PO.O3MODE
P0.04MODELY
P0.05MODELY
PO.OGMODE
PO.OTMODE
PO.0BMODE
PO.OSMODE
PO.10MODE
PO.1TMODE

PO.1SMODE

Value Description

0
10
11

Reset
value

Port 0 pin 0 on-chip pull-up/down resistor control. 00

P0.0 pin has a pull-up resistor enabled.
P0.0 pin has repeater mode enabled.

P0.0 pin has neither pull-up nor pull-down.

P0.0 has a pull-down resistor enabled.
Fart 0 pin 1 control, see PO.OOMODE.
Fort 0 pin 2 control, see PO.OOMODE.
Fart 0 pin 3 control, see PO.OOMODE.
Port 0 pin 4 control, see PO.OOMODE.
Part 0 pin § control, see PO.OOMODE.
Fort 0 pin 6 control, see PO.OOMODE.
Fort 0 pin 7 control, see PO.OOMODE.
Fort 0 pin 8 control, see PO.OOMODE.
Fort 0 pin Scontrol, see PO.OOMODE.
Fort 0 pin 10 control, see PO.0O0OMODE.
Fort 0 pin 11 control, see PO.OOMODE.
Reserved.

Fort 0 pin 15 control, see PO.OOMODE.

00
0o
00
0o
00
0o
00
0o
00
0o
00
NA
00

Figure 3. LPC17xx User Manual PINMODEO

Table 94. Open Drain Pin Mode select register 0 (PINMODE_ODO - address 0x4002 C068) bit

description
PINMODE Symbaol Value Description Reset
_ODo value
0 Po_0OODE] Port 0 pin 0 open drain mode control. 0

0 P0.0 pin is in the normal (not open drain) mode.
P0.0 pin is in the open drain mode.

1 PO.010DE] Port 0 pin 1 open drain mode control, see PO.000D 0
2 PO.0200D Port 0 pin 2 open drain mode control, see PO.000D 0
3 F0O.030D Port 0 pin 3 open drain mode control, see PO.000D 0
4 PO.0400D Port 0 pin 4 open drain mode control, see PO.000D 0
5 FO.0S0D Port 0 pin 5 open drain mode control, see PO.000D 0
6 PO.0BOD Port 0 pin 6 open drain mode control, see PO.000D 0
T FO.OTOD Port 0 pin 7 open drain mode control, see PO.000D 0
8 PO.0B0OD Port 0 pin 8 open drain mode control, see PO.000D 0
Q FO.020D Port 0 pin 9 open drain mode control, see PO.000D 0

Figure 4. LPC17xx User Manual PINMODE_ODO

For example, if one desires to configure pin 0.09 to enable a pull-up resistor and open drain mode, one
must clear bits 18 & 19 of PINMODEDO register, and set bit 9 of register PINMODE_ODO.

// Using the memory address from the datasheet
*(0x4002C040) &= ~(0x3 << 18);[1V// Clear bits 18 & 19
*(0x4002C068) |= (06x1 << 9);[IV// Set bit 9

// Using LPC17xx.h pointers

LPC_PINCON->PINMODEO &= ~(0x3 << 18);[)// Clear bits 18 & 19
LPC_PINCON->PINMODE 0DO |= (0x1 << 9);[I)// Set bit 9

You may find it helpful to automate register setting and/or clearing. Per our Coding Standards,
inline functions should be used (not Macros).

http://cmpe.kammce.io/books/cmpe-146/page/course-coding-standards#bkmrk-constexpr-functions-

PINCON:PINMODE OD | -3

GPIO by !
BET o = GFIO C
0 - & = : Pin
GFIO s B iy
‘CLR 1 ‘I
Altettiate ! !
Funictions GPIC: i !
FINDIR ry
FINCOHN GFIO-PIH FINCON:
PINSEL PINMODE

‘ GPIO FIOMASKE

Figure 5. LPC17xx Pin Registers & Circuit (credit:
https://sites.google.com/site/johnkneenmicrocontrollers/input_output/io_1768)

https://sites.google.com/site/johnkneenmicrocontrollers/input_output/io_1768

ADC (Analog to Digital

Converter)

Objective

To learn about the use of ADCs, their different types, their related parameters, and how to set up an
ADC driver for the LPC17xx.

What does ADC accomplish?

An Analog to Digital Converter is needed whenever one needs to interface a digital system with an
analog device. For example, if one needs to read the voltage across a resistor, and use the value within
an algorithm running on the SJOne board, an ADC circuit is needed to convert the analog voltage to a
discrete digital value. Luckily, the LPC17xx, like most microcontrollers, includes an ADC circuit that we
can utilize.

Different types of ADC circuits

Flash ADC

The simplest and fastest ADC circuit relies on a series of comparators that compare the input voltage to
a range of voltage reference values. The digital output of the comparators is wired to a priority encoder.
The output of the priority encoder represents the binary value of the input voltage.

Note that the number of bits of the binary output (n) requires 2" comparators. Therefore, the circuit
complexity grows exponentially with respect to the number of bits used to represent the converted value
(resolution).

Analog
input

Vdd
T

B-line to
3-line
| priority |
encoder ,
' — — Binary output

Figure 1. Flash ADC Circuit (credit: allaboutcircuits.com)

Digital
output

Time —

Figure 2. Flash ADC Timing (credit: allaboutcircuits.com)

http://35.197.33.68:8080/uploads/images/gallery/2018-01-Jan/flash_adc_circuit.png

Digital Ramp ADC

This type of ADC utilizes an up counter, a comparator, a DAC, and a register. DACs (Digital Analog
Converters), as their name suggests, perform the inverse operation of an ADC, i.e. They convert a
binary input into an analog voltage output. The up counter starts at zero and counts up synchronously.
The output of the counter is wired to the DAC. The analog output of the DAC is compared to the analog
input signal. As long as the comparator indicates that the input voltage is larger than the DAC's value,
the counter continues to increment. Eventually, the DAC's output will exceed the input voltage, and the
comparator will activate the counter's reset signal as well as the register's load signal. The register's
output represents the binary value of the input analog signal.

Note that be ild—d Elj_d to
produce the M, _> i DAC
| o
i CTR Lo —
g L e
g e e
Load 5556666
-4 -
Vdd
N
_ L SRG |-
Vi, -
- Bina
— | Outptrl)(
o> N
1

Figure 3. Digital Ramp ADC Circuit (credit: allaboutcircuits.com)

Analog
input

Digital

OUtp ut ‘—‘_'_L_,_._‘_‘_._._‘_'_._f

Time —»

Finiire 4a Dinital Ramn ADC. Timina (credit: allahotiteirciiits com)
Digital
output .

- i - =
longer shorter
time time

Figure 4b. Digital Ramp ADC Timing Variance (credit: allaboutcircuits.com)

Successive Approximation ADC

A successive approximation ADC works very similarly to a digital ramp ADC, except it utilizes a
successive approximation register (SAR) in place of the counter. The SAR sets each bit from MSB to
LSB according to its greater/less than logic input signal.

This type of ADC is more popular than flash and digital ramp due to its consistent timing and relatively
scalable design.

L — + DAC
SAR R
> /< - f‘E‘ E E
e
Pone e eg oot
— —
Vdd
1
] SRG
Vi, -
L Bina
— outpm
N |
L
Analog
input
Time —
Digital
output H_‘_._‘_._'_‘—'—'—L_,_,_,_,_‘—'—'I
Time —=

Figure 6. Successive Approximation ADC Timing (credit: allaboutcircuits.com)

Tracking ADC

A Tracking ADC works similarly to the Digital Ramp ADC, except instead of an up counter, it utilizes an

up-down counter. The output of the comparator determines whether the counter increments or

decrements. It doesn't use a register to hold the processed value since it's constantly tracing the input

value.

Note that this type
Additionally, it sut

UL

-,
=

Vdd gnal.
vn as bit bobble.

H

O

1

il |

PRt P,
TP P o |
RN Pt P P |
welmdededel e
QAERTTST PNt Pt Pt Py |

DAC

Bina
— outerJ)f

Figure 7. Tracking ADC Circuit (credit: allaboutcircuits.com)

AlTdly
input

—

S

Time —=
Digital
Time —

Figure 8. Tracking ADC Timing (credit: allaboutcircuits.com)

DAC-free ADCs

Besides Flash ADC, all previous ADC circuits rely on using DACs to convert an estimated digital value
to an analog one and compare it to the input signal. There are other types of ADC technologies that do
not use DACs. They rely on the known time it takes an RC circuit to discharge to match the input analog
signal. Single Slope, Dual Slope, and Delta-Sigma ADCs implement this concept.

ADC Parameters

Resolution

This is typically the most-highlighted aspect of any ADC technology. Resolution refers to the number of
bits of the ADC's output. It's a measurement of how coarse/fine the converted value is. A four bit 5V
ADC offers 16 values for the voltage range 0 V to 5 V (i.e. roughly 312 mV per bit increment). A 10 bit
5V ADC offers 1024 values for the same voltage range (roughly 5 mV per bit increment).

Sampling Frequency

This is simply the circuit's latency (i.e. the rate of converting an analog input signal to digital bits). The
highest frequency of an analog signal that a given ADC circuit is able to adequately capture is known as

Nyquist frequency. Nyquist frequency is equal to one-half of the circuits sampling frequency. Therefore,
to adequately convert an analog signal of frequency n Hz, one must have an ADC circuit with 2n Hz
sampling frequency. Otherwise, aliasing happens. Aliasing occurs when an ADC circuit samples an
input signal too slowly, thus producing an output signal that is not the true input signal, but rather an

alias of it.

AN

Figure 9. ADC Aliasing

Step Recovery

This is a measurement of how quickly an ADC's output is able to respond to a sudden change in input.
For example, flash and successive approximation ADCs are able to adjust relatively quickly to input
changes while tracking ADC struggles with large input changes.

Range

This is a measurement of the range of voltages that an ADC circuit is able to capture and output. For
example, the LPC1758 has a range of 0V to 3.3V. Other ADCs may have bigger ranges or even
variable ranges that a user can select, such as this device: https://www.mouser.com/ds/2/609/AD7327-
EP-916882.pdf

Error

This is a measurement of the systematic error of any given ADC circuit. This is measured by comparing

https://www.mouser.com/ds/2/609/AD7327-EP-916882.pdf
https://www.mouser.com/ds/2/609/AD7327-EP-916882.pdf

the actual input signal to its digital output equivalent. Note that, this error measurement is only valid
within the range of the ADC in question.

ADC REINEFIOL Bk £6X.

1. Power: In the PCONP register (Table 46), set the PCADC bit.

Remark: On reset, the ADC is disabled. To enable the ADC, first set the PCADC bit,
and then enable the ADC in the ADOCR register (bit PDN Table 531). To disable the
ADC, first clear the PDN bit, and then clear the PCADC bit.

2. Clock: In the PCLKSELO register (Table 40), select PCLK_ADC. To scale the clock for
the ADC, see bits CLKDIV in Table 531.

3. Pins: Enable ADCO pins through PINSEL registers. Select the pin modes for the port
pins with ADCO functions through the PINMODE registers (Section 8.5).

Figure 10. LPC17xx User Manual ADC Instructions

29.5.1 AJ/D Control Register (ADOCR - 0x4003 4000)

Table 531: A/D Control Register (ADOCR - address 0x4003 4000) bit description

Bit Symbol Value Description Reset
value
70 SEL Selects which of the ADO.7:0 pins is (are) to be sampled and converted. For ADO, bit0 0x01

selects Pin ADO.0, and bit 7 selects pin ADO.7. In software-controlled mode, only one of
these bits should be 1. In hardware scan mode, any value containing 1 to 8 ones is
allowed. All zeroes is equivalent to 0x01.

15:8 CLKDIV The APB clock (PCLE_ADCO) is divided by (this value plus one) to produce the clock for 0
the A'D converter, which should be less than or equal to 13 MHz. Typically, software
should program the smallest value in this field that yields a clock of 13 MHz or slightly
less, but in certain cases (such as a high-impedance analeg source) a slower clock may
be desirable.

16 BURST 1 The AD converter does repeated conversions at up to 200 kHz, scanning (if necessary) 0
through the pins selected by bits set to ones in the SEL field. The first conversion after the
start corresponds to the least-significant 1 in the SEL field, then higher numbered 1-bits
{pins) if applicable. Repeated conversions can be terminated by clearing this bit, but the
conversion that's in progress when this bit is cleared will be completed.

Remark: START bits must be 000 when BURST = 1 or conversions will not start.
0 Conversions are software controlled and require 85 clocks.

20017 - Reserved, user software should not write ones to reserved bits. The value read from a MA
reserved bit is not defined.

21 PDN 1 The AJ/D converter is operational. 0
0 The A/D converter is in power-down mode.

2322 - Reserved, user software should not write ones to reserved bits. The value read from a MA
reserved bit is not defined.

26:24 START When the BURST bit is 0, these bits control whether and when an A/D conversion is 0
started:

000 Mo start (this value should be used when clearing PDN to 0).
001 Start conversion now.
010 Start conversion when the edge selected by bit 27 occurs on the P2.10 7 EINTO / NMI pin.

on Start conversion when the edge selscled by bit 27 occurs on the P1.27 / CLKOUT f
USBE_OVRCRn / CAPO.1 pin.

100 Start conversion when the edge selected by bit 27 occurs on MATO.1. Note that this does
not require that the MATO0.1 function appear on a device pin.

101 Start conversion when the edge selected by bit 27 occurs on MATO.3. Note that it is not
possible to cause the MATO.3 function to appear on a device pin.

110 Start conversion when the edge selected by bit 27 occurs on MAT1.0. Note that this does
not require that the MAT1.0 function appear on a device pin.

111 Start conversion when the edge selected by bit 27 occurs on MAT1.1. Mote that this does
not require that the MAT1.1 function appear on a device pin.

27 EDGE This bit is significant only when the START field contains 010-111. In these cases: 0
Start conversion on a falling edge on the selected CAPIMAT signal.
0 Start conversion on a rising edge on the selected CAP/MAT signal.
3128 - Reserved, user software should not write ones to reserved bits. The value read from a NA

reserved bit is not defined.

Figure 11. LPC17xx User Manual ADC Control Register

PWM (Pulse Width

Modulation)

Objective

To learn about the use of PWM signals, their related parameters, and how to set up an ADC driver for

the LPC17xx.

What is a PWM signal?

A Pulse Width Modulation (PWM) signal is simply a digital signal that is on (high) for part of its period
and off (low) for the remainder of its period. If such signal is on half the time and off the other half, then

'
PWM Signal 1 ‘

PWM Signal 2

L L

Figure 1. PWM Signal (credit: www.bvsystems.be)

PWM Parameters

Duty Cycle

http://books.socialledge.com/uploads/images/gallery/2018-02-Feb/pwm.jpg

A duty cycle of a certain PWM signal is given as a percentage, and it represents the ratio of the signal
"on" time to the signal's full period. In other words, if the duty cycle of a signal is said to be 75%, it
means that this signal is high for 75% of its period and low for the remaining 25%. 100% duty cycle
implies a constantly high signal, and a 0% duty cycle implies a constantly grounded signal.

Frequency

The frequency of a PWM signal (just like any electrical signal) refers to the rate at which the signal
repeats per second. A 1 Hz signal repeats every 1 second while a 1 KHz signal repeats every 1
millisecond.

Duty

pe———]

Period

Figure 2. Parameters of a PWM signal

PWM Signal Applications

Generally speaking, a PWM signal is a way for a digital system to interface with an analog device.

DC Motors

DC Motors are controllable via a PWM signal. The duty cycle of the signal is typically linearly
proportional to the velocity of the motor. For example, a 60 RPM motor driven by a 50% duty cycle
PWM signal will rotate at a 30 RPM velocity. It's worth noting that such signal needs to run at a high
enough frequency (10 KHz for example) so the motor can rotate smoothly. A low-frequency PWM signal
(say 10 Hz) will result in an observable choppy motor motion.

LEDs

http://books.socialledge.com/uploads/images/gallery/2018-02-Feb/pwm-signal.png

The brightness of an LED can be controlled via a reasonably high-frequency PWM signal. A 5V 50%
PWM signal applied to an LED will have the same brightness effect as a constant 2.5V signal applied to
the same LED.

Servos

Servos are typically controlled by a 50 Hz PWM signal, where the duty cycle of the signal determines
the angle of the servo. Typically, the duty cycle ranges from 5% to 10%, causing the servo to rotate to
its smallest and largest angles, respectively.

PWM Driver for LPC17xx

24.1 Basic configuration

The PWM is configured using the following registers:

1. Power: In the PCONP register (Table 46), set bit PCPWML1.
Remark: On reset, the PWM is enabled (PCPWML1 = 1).
2. Peripheral clock: In the PCLKSELO register (Table 40), select PCLK_PWML1.

3. Pins: Select PWM pins through the PINSEL registers. Select pin modes for port pins
with PWML1 functions through the PINMODE registers (Section 8.5).

4. Interrupts: See registers PWM1MCR (Table 449) and PWM1CCR (Table 450) for
match and capture events. Interrupts are enabled in the NVIC using the appropriate
Interrupt Set Enable register.

Theory of Operation

Behind every PWM is a Peripheral (HW) counter (TC). For "Single Edge" PWM, when the counter
starts from zero, the output of the PWM (GPIO) can reset back to logical 1. Then, when the value of the
"Match Register (MR)" occurs, then the PWM output can set to logical 0. Therefore, the maximum limit
of the TC controls the frequency of the PWM signal, and the MR registers control the duty cycle.

Period = 5 ms PWMTC Reset at PWM MRO Match
} { -

e oYY 2) B o)X 2N

Reset /

PWHL'W\ / " Sr-Pwmmmzz

PWFHB(< e, X [Punnuro=4 4

t-0ms t=2ms t=dms t=5ms t=10ms

PWM MRO = 5TC Ticks

‘llql“_...plll'
e

Software PWM

This section demonstrates the LPC PWM operation in software. The LPC processor implements similar

code, but in the hardware.

void lpc_pwm(void)

{
bool GPIO PWM1l = true; // Hypothetical GPIO that this PWM channel controls
uint32 t TC = 0; // Hardware counter
uint32 t MRO = 500; // TC resets when it matches this

// Assumptions: SW instructions add no latency, and delay us() is the only instruction that takes ti

while (1)
{
if (++TC >= MRO) {
TC = 0;
GPIO PWM1 = true; // GPIO is HIGH on the reset of TC
}

if (TC >= MR1) {
GPIO PWM1 = false; // GPIO resets upon the match register

// 1uS * 500 = 500uS, so 2Khz PWM
delay us(1);
1}

Registers of relevance

What you are essentially trying to control is the PWM frequency and the PWM duty cycle. For instance,
a 50% duty cycle with just a 1Hz PWM will blink your LED once a second. But a 50% duty cycle 1Khz
signal will dim your LED to 50% of the total brightness it is capable of. There are "rules" that the PWM
module uses to alter a GPIO pin's output and these rules are what you are trying to understand. So
read up on "Rules of Single Edge Conrolled PWM" in your datasheet and overall the LPC PWM chapter
at minimum 10 times to understand it. You may skip the sections regarding "capture", and
“interrupts”. Furthermore, to use the simplified PWM, you can use the Single Edge PWM rather than
the more complex Double Edge because the Single Edge edge PWM is controlled by a dedicated MR
register.

TC, MRO, MCR and PR: The Prescalar (PR) register controls the tick rate of the hardware counter that
can alter the frequency of your PWM. For instance, when the CPU clock is 10Mhz, and the PR = 9,
then the TC counts up at the rate of 10/(9+1) = 1 Mhz. Hence, the PR affects the frequency, but we still
need a "max count" to set the frequency with precision. So if the TC increments at 1Mhz, and MRO is
set to 100, then you will have 1000Khz/100 = 10Khz PWM.

The MCR register controls what happens to the TC when a match occurs. The one subtle, but
important thing we need to do is that when the MRO match occurs, we need the TC to reset to zero to
be able to use MRO as a frequency control.

TCR and PCR: The PCR register enables the channels, so if you have PWML1.4 as an output, that
means you need to enable channel 4. The TCR register is a key register that will enable your PWM
module.

Lab Assignment: ADC + PWM

Objective

Implement an ADC driver, implement a PWM driver, and design and implement an embedded
application, which uses both drivers.

This lab will utilize:

® ADC Driver
PWM Driver
FreeRTOS Tasks
* A potentiometer
An RGB LED

Assignment

Part O: Implement basic ADC Driver and read Light Sensor
Values

Channel 2 (Pin P0.25) already has Light Sensor connected to it.
* Create just 1 task which reads the Light sensor value and prints it periodically.

While the task is running cover the light sensor and your task should print values <50.

Use the flash light on your phone on the light sensor and your task should print values >3500.

void light sensor print task(void *p)
{
D/*
[* 1) Initial ADC setup (Power, clkselect, pinselect, clkdivider)
* 2) Select ADC channel 2
* 3) Enable burst mode

*/

Wwhile(1) {
[Muintl6e t ls val = adc read channel(2);
Mprintf("Light Sensor value is %d\n", ls val);
[Tldelay ms(100);

03

Part 1. Implement an ADC Driver

Using the following header file,

Implement adcDriver.cpp such that it implements all the methods in adcDriver.h below.

Every method must accomplish its task as indicated in the comments.

You may add any other methods to enhance the functionality of this driver.

It is recommended that you test your ADC driver with ADC_PIN_0_25 because it is connected to the
analog light sensor and this is probably the easiest way to test your driver.

For proper operation of the SJOne board, do NOT configure any pins as ADC except for 0.26,
1.30,1.31

While in burst mode, do not wait for the "DONE" bit to get set.

#include <stdio.h>
#include "io.hpp"
class LabAdc

{
public:
enum Pin
{
ko 25, // ADO.2 <-- Light Sensor -->
k0 26, // ADO.3
k1 30, // ADO.4

k1l 31, // ADO.5

/* These ADC channels are compromised on the SJ-One,

* hence you do not need to support them

*/

// k6 23 =0, // ADO.O
// kO 24, // ADO.1
// ke 3, // ADO.6
// ko 2 // AD@.7

}i
// Nothing needs to be done within the default constructor

LabAdc();

J*x
* 1) Powers up ADC peripheral

* 2) Set peripheral clock

* 2) Enable ADC

* 3) Select ADC channels

* 4) Enable burst mode

*/

void AdcInitBurstMode();

/x5

* 1) Selects ADC functionality of any of the ADC pins that are ADC capable

*

* @param pin is the LabAdc::Pin enumeration of the desired pin.

*

* WARNING: For proper operation of the SJOne board, do NOT configure any pins
* as ADC except for 0.26, 1.31, 1.30

*/

void AdcSelectPin(Pin pin);

/**

* 1) Returns the voltage reading of the 12bit register of a given ADC channel
* You have to convert the ADC raw value to the voltage value

* @param channel is the number (0 through 7) of the desired ADC channel.

*/

float ReadAdcVoltageByChannel(uint8 t channel);

Part 2. Implement a PWM Driver

Using the following header file,

Implement pwmDriver.cpp such that it implements all the methods in pwmDriver.h below.

Every method must accomplish its task as indicated in the comments.
* You may add any other methods to enhance the functionality of this driver.

It may be best to test the PWM driver by using a logic analyzer

#include <stdint.h>

class LabPwm

{
public:
enum Pin
{
k2 0, // PWM1.1
k2 1, // PWM1.2
k2 2, // PWM1.3
k2 3, // PWM1.4
k2 4, // PWM1.5
k2_5, // PWM1.6
b
/// Nothing needs to be done within the default constructor
LabPwm() {}
/**
* 1) Select PWM functionality on all PWM-able pins.
*/
void PwmSelectAllPins();
[/ **

* 1) Select PWM functionality of pwm _pin_arg

*

* @param pwm_pin _arg is the PWM _PIN enumeration of the desired pin.
&/
void PwmSelectPin(PWM PIN pwm pin arg);

/X*
* Initialize your PWM peripherals. See the notes here:
* http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/pwm-%28puls

*

* In general, you init the PWM peripheral, its frequency, and initialize your PWM channels and set
*
* @param frequency Hz is the initial frequency in Hz.
*/
void PwmInitSingleEdgeMode(uint32 t frequency Hz);
D/**
* 1) Convert duty cycle percentage to the appropriate match register value (depends on current fre
* 2) Assign the above value to the appropriate MRn register (depends on pwm pin arg)
*
* @param pwm_pin _arg is the PWM _PIN enumeration of the desired pin.
* @param duty cycle percentage is the desired duty cycle percentage.
*/
[void SetDutyCycle(PWM PIN pwm pin arg, float duty cycle percentage);

D/**
* Optional:
* 1) Convert frequency Hz to the appropriate match register value
* 2) Assign the above value to MRO
b3
* @param frequency hz is the desired frequency of all pwm pins
=/
[void SetFrequency(uint32_t frequency Hz) };

Part 3: Application

In order to demonstrate that both drivers function, you are required to interface a potentiometer and an
RGB LED to the SJOne board. The potentiometer ADC input shall control the duty cycle of the RGB
LED pwm outputs. Note that an RGB LED has three input pins that you will connect to three different

PWM output pins. You must use your own ADC and PWM drivers, as well as your own FreeRTOS task.

Extra credit can be earned with an interesting/cool/creative RGB output.

Requirements

® Using your own ADC Driver, read input voltage from a potentiometer
© Print the voltage reading every 1s.
® Using your own PWM Driver, drive an RGB LED.
© Print the duty cycle of all three RGB pins every 1s.
The PWM output to the RGB LED must be dependent on the ADC input from the potentiometer.
® By varying the potentiometer, you should be able to see changes in the color of the RGB Led.

You don't need a periodic task for the PWM to work. Initialize the driver, set period and duty
cycle. PWM will start generating pulses immediately. You can vary the duty cycle of PWM inside
the ADC task.

Lab Assignment (in C): ADC
+ PWM

Objective

Improve an ADC driver, and use an existing PWM driver to design and implement an embedded

application, which uses RTOS queues to communicate between tasks.
This lab will utilize:

® ADC Driver
© You will improve the driver functionality
© You will use a potentiometer that controls the analog voltage feeding into an analog pin of your
microcontroller
* PWM Driver
© You will use an existing PWM Driver to control a GPIO
© An led brightness will be controlled, or you can create multiple colors using an RGB LED
* FreeRTOS Tasks
© You will use FreeRTOS queues

Assignment

Preparation:

Before you start the assignment, please read the following in your LPC User manual
~» (UM10562.PDF)
o Chapter 7: 1/0 configuration

- Chapter 32: ADC

Part 0: Use PWM1 driver to control a PWM output pin

1. Re-use the PWM driver

* Study the pwml.h and pwml.c files under 13 drivers directory

2. : .
Locate the pins that the PWM peripheral can control at Table 84: FUNC values and pin functions

® These are labeled as PwM1[x] where PwM1 is the peripheral, and [x] is a channel

° So PwM1[2] means PWM1, channel 2

* Now find which of these channels are available as a free pin on your SJ2 board and connect the
RGB led

° Setthe FUNC of the pin to use this GPIO as a PWM output

3. Initialize and use the PWM-1 driver

* |nitialize the PWML1 driver at a frequency of your choice (greater than 30Hz for human eyes)
® Set the duty cycle and let the hardware do its job :)

4. You are finished with Part 0 if you can demonstrate control over an LED's brightness using the HW
based PWM method

PWM GPIO

MUX p———> MUX

TC

MATCH
REGISTER PWMSEL
(MR)

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__pwm_block.png

#include "pwml.h"
#include "FreeRT0S.h"
#include "task.h"

void pwm task(void *p) {

pwml init single edge(1000);

// Locate a GPIO pin that a PWM channel will control
// NOTE You can use gpio_ construct with function() API from gpio.h
// TODO Write this function yourself

pin_configure pwm channel as io pin();

// We only need to set PWM configuration once, and the HW will drive
// the GPIO at 1000Hz, and control set its duty cycle to 50%
pwml set duty cycle(PWMl 2 0, 50);

// Continue to vary the duty cycle in the loop
uint8 t percent = 0;
while (1) {

pwml set duty cycle(PWM1 2 0, percent);

if (++percent > 100) {
percent = 0;
vTaskDelay(100);
}
void main(void) {

xTaskCreate(pwm_task, ...);

vTaskStartScheduler();}

Part 1: Alter the ADC driver to enable Burst Mode

‘ Study adc.h and adc.c filesin 13 drivers directory and correlate the code with the ADC

peripheral by reading the LPC User Manual.
© Do not skim over the driver, make sure you fully understand it.

[]
Implement a new function called adc enable burst mode() which will set the relevant bits in

Control Register (CR) to enable burst mode.
* |dentify a pin on the SJ2 board that is an ADC channel going into your ADC peripheral.

° Reference the 1/0 pin map section in Table 84,85,86: FUNC values and pin functions
® Connect a potentiometer to one of the ADC pins available on SJ2 board. Use the ADC driver and
implement a simple task to decode the potentiometer values and print them. Values printed should
range from 0-4095 for different positions of the potentiometer.

Note:
- The existing ADC driver is designed to work for non-burst mode
- You will need to write a routine that reads data while the ADC is in burst mode

? -You will also create adc_get channel reading with burst mode() that can return an ADC

channel reading
- Hint: You will need to set the right bits in CR register to enable burst-mode

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__adc_block.png

