
 Bit-masking is a technique to selectively modify individual bits without affecting other bits.

To set a bit, we need to use the OR operator. This is just like an OR logical gate you should've learned in the
Digital design course. To set a bit, you would OR a memory with a bit number, and the bit number with which
you will OR will end up getting set.

To reset or clear a bit, the logic is similar, but instead of ORing a bit, we will AND a bit. Remember that AND
gate clears a bit if you AND it with 0 so we need to use a tilde (~) to come up with the correct logic:

Bitmasking

Bit SET

// Assume we want to set Bit#7 of a register called: REG

REG = REG | 0x80;

// Let's set bit#31:

REG = REG | 0x80000000;

// Let's show you the easier way:

// (1 << 31) means 1 gets shifted left 31 times to produce 0x80000000

REG = REG | (1 << 31);

// Simplify further:

REG |= (1 << 31);

// Set Bit#21 and Bit# 23:REG |= (1 << 21) | (1 << 23);

Bit CLEAR

// Assume we want to reset Bit#7 of a register called: REG

REG = REG & 0x7F;

REG = REG & ~(0x80); // Same thing as above, but using ~ is easier

// Let's reset bit#31:

REG = REG & ~(0x80000000);

// Let's show you the easier way:

REG = REG & ~(1 << 31);

// Simplify further:

Suppose you want to check bit 7 of a register is set:

Now let's work through another example in which we want to wait until bit#9 is 0

REG &= ~(1 << 31);

// Reset Bit#21 and Bit# 23:REG &= ~((1 << 21) | (1 << 23));

Bit TOGGLE

// Using XOR operator to toggle 5th bit

REG ^= (1 << 5);

// Invert bit3, and bit 5REG ^= ((1 << 3) | (1 << 5));

Bit CHECK

if(REG & (1 << 7))

{

 	DoAThing();

}

// Loop while bit#7 is a 0

while(! (REG & (1 << 7))) {

 ;}

// As long as bit#9 is non zero (as long as bit9 is set)

while((REG & (1 << 9)) != 0) {

 ;

}

// As long as bit#9 is set

while(REG & (1 << 9)) {

 ;

}

GPIO Example of NXP CPU

In this example, we will work with an imaginary circuit of a switch and an LED. For a given port, the following
registers will apply:

GPIO selection: PINSEL register (not covered by this example)
GPIO direction: DIR (direction) register
GPIO read/write: PIN register

Each bit of DIR1 corresponds to each external direction pin of PORT1. So, bit0 of DIR1 controls the direction of
physical pin P1.0 and bit31 of DIR2 controls physical pin P2.31. Similarly, each bit of PIN controls the output
high/low of physical ports P1 and P2. PIN not only allows you to set an output pin, but it allows you to read
input values as sensed on the physical pins.

Suppose a switch is connected to GPIO Port P1.14 and an LED is connected to Port P1.15. Note that if a bit is
set of DIR register, the pin is OUTPUT otherwise the pin is INPUT. So... 1=OUTPUT, 0=INPUT

LPC also has dedicated registers to set or reset an IOPIN with hardware AND and OR logic:

// Set P1.14 as INPUT for the switch:

LPC_GPIO1->DIR &= ~(1 << 14);

// Set P1.15 as OUTPUT for the LED:

LPC_GPIO1->DIR |= (1 << 15);

// Read value of the switch:

if(LPC_GPIO1->PIN & (1 << 14)) {

 // Light up the LED:

 LPC_GPIO1->PIN |= (1 << 15);

} else {

 // Else turn off the LED:

 LPC_GPIO1->PIN &= ~(1 << 15);}

if (LPC_GPIO1->PIN & (1 << 14)) {

 LPC_GPIO1->SET = (1 << 15); // No need for |=

}

else {

 // Else turn off the LED:

 LPC_GPIO1->CLR = (1 << 15); // No need for &=}

How many ways to test an integer named value is a power of two by using a bit manipulation?

What does this function do?

Brainstorming

(value | (value + 1)) == value

(value & (value + 1)) == value

(value & (value - 1)) == 0

(value | (value + 1)) == 0

(value >> 1) == (value/2) ((value >> 1) << 1) == value

boolean foo(int x, int y) {

 return ((x & (1 << y)) != 0);}

Revision #40

Created 3 years ago by Admin

Updated 9 months ago by vidushi

http://books.socialledge.com/user/1
http://books.socialledge.com/user/14

