
Remember that consistency is more important than standards. That means that you can make different
decisions, but it is important to stay consistent. With that side, for better or worse, C code uses
under_score_standard while C++ code usesCamelCase. This is an inconsistency that needs to be fixed
because the developers realized that acronyms do not work well with camel case and this was realized too late.

Secondly, FreeRTOS follows significantly different coding standard. Please read more about it here, but the
biggest hint is that the first letter, such as "v" in vTaskDelay means that it is a void return type.

Easily reusable from common multi purpose functions and objects.
Easily maintainable from consistent coding practices.
Easily understood code from well described methods and self-documenting variables.

DO NOT include unused headers in a source file
ALWAYS use parenthesis arguments in any mathematical expression. Do not rely on operator precedence.
ALWAYS Prioritize code maintainability over code complexity
DO NOT use break statements except for in switch statements
ALWAYS put curly braces must be on their own line

NEVER omit curly braces
NEVER single line an if statement

Course Coding Standards
Existing Code Structure

Goals

Code Structure

int32_t algorithm(int32_t a, int32_t b)

{

 if(a < 0)

 {

 a = -a;

 }

 return (a + b);}

https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html

REFRAIN from functions that are more than 100 lines. Make code highly modular
DO NOT have more than one exit (return statement) point from a function

int32_t algorithm(int32_t a, int32_t b)

{

 if(a < 0) a = -a; /* NOT ALLOWED */

 if(a < 0)

 a = -a; /* NOR IS THIS ALLOWED */

 if(a < 0) { a = -a; } /* REFRAIN FROM THIS AS WELL, MAKES DEBUGGING CODE LINES AMBIGUOUS */

 return (a + b);}

ALWAYS Use spaces around all operators.

DO: uint32_t counter = 5 + 2;

DO NOT: uint32_t counter=5+2;
ALWAYS include a default case in a switch statements
ALWAYS Use 4 spaces for indentations

Do not use tab characters in your source
ALWAYS Separate logical blocks with one blank line

/* BAD */

int32_t algorithm(int32_t a, int32_t b)

{

	if(a < 25)

	{

		return 25;

	}

	else

	{

		return b;

	}

}

/* GOOD */

int32_t algorithm(int32_t a, int32_t b)

{

	int result;

	if(a < 25)

	{

		result = 25;

	}

	else

	{

		result = b;

	}

	return result;}

//Bad Example

uint8_t current[6];

//Good Example

REFRAIN from dynamically allocating memory

REFRAIN from creating global variables.
ALWAYS put constants, enumerations, structures, objects/variables at the top of the scope

For global variables that means the top of the file
For local variables to a function, the top of a function

ALWAYS use highly descriptive variable names
ALWAYS use snake_case for variable names

Example: uint32_t interrupt_counter = 0;

ALWAYS use <stdint.h> integer types from: uint8_t , int8_t , uint16_t , int16_t , uint32_t , int32_t
, etc

ALWAYS use booleans from stdbool.h .
NEVER use floats for calculations, use doubles instead. You may store floating point values as floats or
doubles.

Use of macros should be limited to preprocessor conditionals and that is it

Any flags should be checked for as the following: #if (MY_FEATURE)

DO use this in place of Macro functions.

const uint32_t NUM_DEVICES = 6;uint8_t current[NUM_DEVICES];

Memory

Variables (snake_case)

Types (snake_case)

Macros (CAPS)

Inline Functions (CAPS)

/* !!BAD!! */

#define HASH(letter) (uint8_t)(letter-'A')

/* GOOD */

inline uint8_t HASH(char letter)

{

ALWAYS use const or enumerations instead of "magic" numbers
Use unit names in constants.

Use constants to convert between units instead of hard coding the conversions.

ALWAYS use CamelCase for function names
Attempt to make functions generic so it can be reused.

Protected Section
Member variables as private

Private Section
Not used

Public Section
Methods
Setters and getter methods

Declare constants within classes as static
Constructors should not alter or modify hardware/registers.

 return (uint8_t)(letter-'A');}

Constants (CAPS)

const uint32_t MILLISECONDS = 1;const uint32_t SECONDS = (1000 * MILLISECONDS);

Functions (camelCase)

Classes/Structures/Objects
(CapCamelCase)

Revision #10

Created 1 year ago by Admin

Updated 11 months ago by Preet Kang

http://books.socialledge.com/user/1
http://books.socialledge.com/user/8

