
Learn how Tasks and Queues work
Assess how task priorities affect the RTOS Queue cooperative scheduling

Tasks of equal priority that are both ready to run are scheduled by the RTOS in a round-robin fashion. This
type of context switch is called Preemptive Context Switch.

Queues' API can also perform context switches, but this is a type of Cooperative Context Switch. What this

means is that if xQueueSend() API is sending an item to a higher priority task that was waiting on the same

queue using the xQueueReceive() API, then the sending task will switch context inside of the xQueueSend()
function over to the other task. Therefore, task priorities matter when using the queue API.

Also note that when the cooperative context switch occurs, it does not wait for the next tick of preemptive
scheduling to switch context. Typical RTOSes support both cooperative and preemptive scheduling, and in

fact, you can turn off preemptive scheduling in FreeRTOSConfig.h

FreeRTOS Producer Consumer
Tasks
Objective

Queues and Task Priorities

static QueueHandle_t switch_queue;

// TODO: Create this task at PRIORITY_LOW

void producer(void *p) {

 int switch_value = 0;

 while (1) {

 // This xQueueSend() will internally switch context to "consumer" task because it is higher priority than this "producer" task

 // Then, when the consumer task sleeps, we will resume out of xQueueSend()and go over to the next line

 // TODO:

 switch_value = get_switch_input_from_switch0();

Finish producer task that reads a switch value and sends it to the queue

Create an enumeration such as typedef enum { switch__off, switch__on} switch_e;

Create a queue, and have the producer task send switch values every second to the queue

Finish consumer task that is waiting on the enumeration sent by the producer task

After ensuring that the producer task is sending values to the consumer task, do the following:

Ensure that the following is already setup:

 // TODO: Print a message before xQueueSend()

 // Note: Use printf() and not fprintf(stderr, ...) because stderr is a polling printf

 xQueueSend(switch_queue, &switch_value, 0);

 // TODO: Print a message after xQueueSend()

 vTaskDelay(1000);

 }

}

// TODO: Create this task at PRIORITY_HIGH

void consumer(void *p) {

 int x;

 while (1) {

 // TODO: Print a message before xQueueReceive()

 xQueueReceive(switch_queue, &x, portMAX_DELAY);

 // TODO: Print a message after xQueueReceive()

 }

}

void main(void) {

 // TODO: Create your tasks

 // TODO: Configure your switch pin

 // Queue handle is not valid until you create it

 switch_queue = xQueueCreate(...);

 vTaskStartScheduler();}

Assignment

Print a message before and after sending the switch value to the queue

Print a message after the consumer task receives an item from the queue
Note down the Observations by doing the following:

Use higher priority for producer task , and note down the order of the print-outs

Use higher priority for consumer task , and note down the order of the print-outs
Use same priority level for both tasks, and note down the order of the print-outs

Answer Additional Questions:

What is the purpose of the block time during xQueueReceive() ?

What if you use ZERO block time during xQueueReceive() ?

Submit all relevant source code
Relevant screenshots of serial terminal output
Submit explanation to the questions as comments in your code at the top of your source code file

Explanation of the Observations
Explanation for the Additional Questions

This extra credit will help you in future labs, so it is highly recommended that you achieve this. You will add a
CLI handler to be able to:

Suspend a task by name
Resume a task by name

Please follow this article to add your CLI command. Here is reference code for your CLI:

What to turn in

Extra Credit

app_cli_status_e cli__task_control(app_cli__argument_t argument, sl_string_t user_input_minus_command_name,

 app_cli__print_string_function cli_output) {

 sl_string_t s = user_input_minus_command_name;

 // If the user types 'taskcontrol suspend led0' then we need to suspend a task with the name of 'led0'

 // In this case, the user_input_minus_command_name will be set to 'suspend led0' with the command-name removed

 if (sl_string__begins_with_ignore_case(s, "suspend")) {

 // TODO: Use sl_string API to remove the first word, such that variable 's' will equal to 'led0'

 // TODO: Or you can do this: char name[16]; sl_string__scanf("%*s %16s", name);

 // Now try to query the tasks with the name 'led0'

 TaskHandle_t task_handle = xTaskGetHandle(s);

 if (NULL == task_handle) {

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/sj2-board#bkmrk-cli-commands

 // note: we cannot use 'sl_string__printf("Failed to find %s", s);' because that would print existing string onto itself

 sl_string__insert_at(s, "Could not find a task with name:");

 cli_output(NULL, s);

 } else {

 // TODO: Use vTaskSuspend()

 }

 } else if (sl_string__begins_with_ignore_case(s, "resume")) {

 // TODO

 } else {

 cli_output(NULL, "Did you mean to say suspend or resume?\n");

 }

 return APP_CLI_STATUS__SUCCESS;}

Revision #20

Created 1 year ago by Preet Kang

Updated 2 weeks ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

