
I2C is pronounced "eye-squared see". It is also known as "TWI" because of the initial patent issues of this BUS.
This is a popular, low throughput (100-1000Khz), half-duplex BUS that only uses two wires regardless of how
many devices are on this BUS. Many sensors use this BUS because of its ease of adding to a system.

Figure x. of some devices connected up to an I2C bus

There are two pins for I2C:

SCL: Serial clock pin
SDA: Serial data pin

The clock line is usually controlled by the Master with the exception that the slave may pull it low to indicate to

I²C (Inter-Integrated Circuit)
What is I2C

Pins of I2C

the master that it is not ready to send data.

The data line is bi-directional and is controlled by the Master while sending data, and by the slave when it
sends data back after a repeat-start condition described below.

I2C is an open-collector BUS, which means that no device shall have the capability of internally connecting
either SDA or SCL wires to power source. The communication wires are instead connected to the power
source through a "pull-up" resistor. When a device wants to communicate, it simply lets go of the wire for it to
go back to logical "high" or "1" or it can connect it to ground to indicate logical "0". This achieves safe
operation of the bus (no case of short circuit), even if a device incorrectly assumes control of the bus.

Figure x. Devices connected to I2C bus.

Open-Collector/Open-Drain BUS

Figure x. I2C device pin output stage.

Using a smaller pull-up can acheive higher speeds, but then each device must have the capability of sinking
that much more current. For example, with a 5v BUS, and 1K pull-up, each device must be able to sink 5mA.

Try this link, and if the link doesn't work, import this into the circuit simulator:

Pull-up resistor

$ 3 0.000005 10.20027730826997 50 5 50

172 352 200 352 152 0 6 5 5 0 0 0.5 Voltage

r 352 240 352 304 0 1000

g 352 368 352 384 0

c 352 304 352 368 0 0.00001 0

S 384 304 432 304 0 1 false 0 2

w 352 240 352 200 0

w 352 304 384 304 0

w 432 320 432 368 0

w 432 368 352 368 0

o 6 64 0 4098 5 0.025 0 2 6 3

Why Use I2C

Pros

http://www.falstad.com/circuit/circuitjs.html?cct=$+3+0.000005+10.20027730826997+50+5+50
172+352+200+352+152+0+6+5+5+0+0+0.5+Voltage
r+352+240+352+304+0+1000
g+352+368+352+384+0
c+352+304+352+368+0+0.00001+0
S+384+304+432+304+0+1+false+0+2
w+352+240+352+200+0
w+352+304+384+304+0
w+432+320+432+368+0
w+432+368+352+368+0
o+6+64+0+4098+0.0000762939453125+0.025+0+2+6+3

IO/Pin Count:
2 pins bus regardless of the number of devices.

Synchronous:
No need for agreed timing before hand

Multi-Master
Possible to have multiple masters on a I2C bus

Multi-slave:
7-bit address allows up to an absolute maximum of 119 devices (because 8 addresses are reserved)
You can increase this number using I2C bus multiplexers

Slow Speed:
Typical I2C devices have a maximum speed of 400kHz
Some devices can sense speeds up to 1000kHz or more

Half-Duplex:
Only one device can talk at a time

Complex State Machine:
Requires a rather large and complex state machine in order to handle communication

Master Only Control:
Only a master can drive the bus
Exception to that rule is that a slave can stop stop the clock if it needs to hold the master in a wait state

Hardware Signal Protocol Overhead
This protocol includes quite a few bits, not associated with data to handle routing and handshaking. This
slows the bus throughput even further

I2C was designed to be able to read and write memory on a slave device. The protocol may be complicated,
but a typical "transaction" involving read or write of a register on a slave device is simple granted a "sunny-day
scenario" in which no errors occur.

I2C at its foundation is about sending and receiving bytes, but there is a layer of unofficial protocol about how
the bytes are interpreted. For instance, for an I2C write transaction, the master sends three bytes and 99% of
the cases, they are interpreted like the following:

1. Device Address
2. Device Register
3. Data

Cons

Protocol Information

The code samples below illustrates I2C transaction split into functions, but this is the wrong way of
writing an I2C driver. An I2C driver should be "transaction-based" and the entire transfer should be
carried out using a state machine. The idea is to design your software to walk the I2C hardware through
its state to complete an I2C transfer.

?

Signal Timing Diagram

Figure x. I2C communication timing diagram.

Figure x. Master Transmit format

The master always initiates the transfer, and the device reading the data should always "ACK" the byte. For
example, when the master sends the 8-bit address after the START condition, then the addressed slave should
ACK the 9th bit (pull the line LOW). Likewise, when the master sends the first byte after the address, the slave
should ACK that byte if it wishes to continue the transfer.

A typical I2C write is to be able to write a register or memory address on a slave device. Here are the steps:

1. Master sends START condition followed by device address.
Device that is addressed should then "ACK" using the 9th bit.

2. Master sends device's "memory address" (1 or more bytes).
Each byte should be ACK'd by the addressed slave.

3. Master sends the data to write (1 or more bytes).

Write Transaction

Each byte should be ACK'd by the addressed slave.
4. Master sends the STOP condition.

To maximize throughput and avoid having to send three I2C bytes for each slave memory write, the memory
address is considered "starting address". If we continue to write data, we will end up writing data to M, M+1,
M+2 etc.

The ideal way of writing an I2C driver is one that is able to carry out an entire transaction given by the function
below.

An I2C read is slightly more complex and involves more protocol to follow. What we have to do is switch from
"write-mode" to "read-mode" by sending a repeat start, but this time with an ODD address. This transition
provides the protocol to allow the slave device to start to control the data line. You can consider an I2C even
address being "write-mode" and I2C odd address being "read-mode".

When the master enters the "read mode" after transmitting the read address after a repeat-start, the master
begins to "ACK" each byte that the slave sends. When the master "NACKs", it is an indication to the slave that
it doesn't want to read anymore bytes from the slave.

NOTE: that the function only shows the different actions hardware should take to carry out the
transaction, but your software will be a state machine.

?

void i2c_write_slave_reg(void)

{

 // This will accomplish this:

 // slave_addr[slave_reg] = data;

 i2c_start();

 i2c_write(slave_addr);

 i2c_write(slave_reg); // This is "M" for "memory address of the slave"

 i2c_write(data);

 /* Optionaly write more data to slave_reg+1, slave_reg+2 etc. */

 // i2c_write(data); /* M + 1 */

 // i2c_write(data); /* M + 2 */

 i2c_stop();}

Read Transaction

Before you jump right into the assignment, do the following:

Again, the function shows what we want to accomplish. The actual driver should use state machine
logic to carry-out the entire transaction.

?

void i2c_read_slave_reg(void)

{

 i2c_start();

 i2c_write(slave_addr);

 i2c_write(slave_reg);

 i2c_start(); // Repeat start

 i2c_write(slave_addr | 0x01); // Odd address (last byte Master writes, then Slave begins to control the data line)

 char data = i2c_read(0); // NACK last byte

 i2c_stop();

}

void i2c_read_multiple_slave_reg(void)

{

 i2c_start();

 i2c_write(slave_addr);

 i2c_write(slave_reg);

 // This will accomplish this:

 // d1 = slave_addr[slave_reg];

 // d2 = slave_addr[slave_reg + 1];

 // d3 = slave_addr[slave_reg + 2];

 i2c_start();

 i2c_write(slave_addr | 0x01);

 char d1 = i2c_read(1); // ACK

 char d2 = i2c_read(1); // ACK

 char d3 = i2c_read(0); // NACK last byte

 i2c_stop();}

I2C Slave State Machine Planning

Read and understand how an I2C master performs slave register read and write operation
Look at existing code to see how the master operation handles the I2C state machine function
This is important so you can understand the existing code base

Next to each of the master state, determine which slave state is entered when the master enters its state
Determine how your slave memory or registers will be read or written

It is important to understand the states, and use the datasheet to figure out what to do in the state to reach the
next desired state given in the diagrams below.

In each of the states given in the diagrams below, your software should take the step, and the hardware will go
to the next state granted that no errors occur. To implement this in your software, you should:

1. Perform the planned action after observing the current state
2. Clear the "SI" (state change) bit for HW to take the next step
3. The HW will then take the next step, and trigger the interrupt when the step is complete

In the diagram below, note that when the master sends the "R#", which is the register to write, then the slave
state machine should save this data byte as it's INDEX location. Upon the next data byte, the indexed data byte
should be written.

Master Write

Stop here and do the following:

1. Check I2C_Base::i2cStateMachine
2. Compare the code to the state diagram below

?

http://www.socialledge.com/sjsu/index.php?title=File:Tutorial_i2c_master_write_state.png

Figure x. I2C Master Write Transaction

Figure x. Section 19.9.1 in LPC17xx User Manual

In the diagram below, the master will write the index location (the first data byte), and then perform a repeat
start. After that, you should start returning your indexed data bytes.

Master Read

http://www.socialledge.com/sjsu/index.php?title=File:Tutorial_i2c_master_read_state.png

Figure x. I2C Master Read Transaction

Figure x. Section 19.9.2 in LPC17xx User Manual

Design your I2C slave state machine diagrams with the software intent in each state.

Re-draw the Master Read and Master Write diagrams while simultaneously showing the slave state.
In each slave state, show the action you will perform.
(Refer to section 19.9.3 and 19.9.4 in LPC17xx user manual for the slave states)
For instance, when the Master is at state 0x08, determine which state your slave will be at.
In this state when your slave gets addressed, an appropriate intent may be to reset your variables.

You will be treated like an engineering professional, and imagine that your manager has given you this
assignment and is asking for the state machine diagrams before you start the code implementation.

Demonstrate excellence, and do not rely on word by word instructions. If you get points deducted, do
not complain that "I was not asked to do this". Do whatever you feel is necessary to demonstrate

Assignment

excellence.

Revision #18

Created 7 months ago by Admin

Updated 5 months ago by Khalil Estell

http://books.socialledge.com/user/1
http://books.socialledge.com/user/5

