
Improve an ADC driver, and use an existing PWM driver to design and implement an embedded application,
which uses RTOS queues to communicate between tasks.

This lab will utilize:

ADC Driver
You will improve the driver functionality
You will use a potentiometer that controls the analog voltage feeding into an analog pin of your
microcontroller

PWM Driver
You will use an existing PWM Driver to control a GPIO
An led brightness will be controlled, or you can create multiple colors using an RGB LED

FreeRTOS Tasks
You will use FreeRTOS queues

The first thing to do is to select a pin to function as a PWM signal. This means that once you select a pin
function correctly, then the pin's function is controlled by the PWM peripheral and you cannot control the pin's
HIGH or LOW using the GPIO peripheral. By default, a pin's function is as GPIO, but for example, you can

disconnect this function and select the PWM function by using the IOCON_P2_0

Lab: ADC + PWM
Objective

Assignment

Preparation:
Before you start the assignment, please read the following in your LPC User manual (UM10562.PDF)
- Chapter 7: I/O configuration
- Chapter 32: ADC

?Part 0: Use PWM1 driver to control a PWM output pin

1. Re-use the PWM driver

Study the pwm1.h and pwm1.c files under l3_drivers directory

2. Locate the pins that the PWM peripheral can control at Table 84: FUNC values and pin functions

These are labeled as PWM1[x] where PWM1 is the peripheral, and [x] is a channel

So PWM1[2] means PWM1, channel 2
Now find which of these channels are available as a free pin on your SJ2 board and connect the RGB
led

Set the FUNC of the pin to use this GPIO as a PWM output

3. Initialize and use the PWM-1 driver

Initialize the PWM1 driver at a frequency of your choice (greater than 30Hz for human eyes)
Set the duty cycle and let the hardware do its job :)

4. You are finished with Part 0 if you can demonstrate control over an LED's brightness using the HW based
PWM method

#include "pwm1.h"

#include "FreeRTOS.h"

#include "task.h"

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__pwm_block.png

Study adc.h and adc.c files in l3_drivers directory and correlate the code with the ADC peripheral by
reading the LPC User Manual.

Do not skim over the driver, make sure you fully understand it.
Identify a pin on the SJ2 board that is an ADC channel going into your ADC peripheral.

Reference the I/O pin map section in Table 84,85,86: FUNC values and pin functions
Connect a potentiometer to one of the ADC pins available on SJ2 board. Use the ADC driver and implement

void pwm_task(void *p) {

 pwm1__init_single_edge(1000);

 // Locate a GPIO pin that a PWM channel will control

 // NOTE You can use gpio__construct_with_function() API from gpio.h

 // TODO Write this function yourself

 pin_configure_pwm_channel_as_io_pin();

 // We only need to set PWM configuration once, and the HW will drive

 // the GPIO at 1000Hz, and control set its duty cycle to 50%

 pwm1__set_duty_cycle(PWM1__2_0, 50);

 // Continue to vary the duty cycle in the loop

 uint8_t percent = 0;

 while (1) {

 pwm1__set_duty_cycle(PWM1__2_0, percent);

 if (++percent > 100) {

 percent = 0;

 }

 vTaskDelay(100);

 }

}

void main(void) {

 xTaskCreate(pwm_task, ...);

 vTaskStartScheduler();}

Part 1: Alter the ADC driver to enable Burst Mode

a simple task to decode the potentiometer values and print them. Values printed should range from 0-4095
for different positions of the potentiometer.

// TODO: Open up existing adc.h file

// TODO: Add the following API

/**

 * Implement a new function called adc__enable_burst_mode() which will

 * set the relevant bits in Control Register (CR) to enable burst mode.

 */

void adc__enable_burst_mode(void);

/**

 * Note:

 * The existing ADC driver is designed to work for non-burst mode

 *

 * You will need to write a routine that reads data while the ADC is in burst mode

 * Note that in burst mode, you will NOT read the result from the GDR register

 * Read the LPC user manual for more details

 */uint16_t adc__get_channel_reading_with_burst_mode(uint8_t channel_number);

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__adc_block.png

Read this chapter to understand how FreeRTOS queues work

Send data from the adc_task to the RTOS queue

Receive data from the queue in the pwm_task

#include "adc.h"

#include "FreeRTOS.h"

#include "task.h"

void adc_task(void *p) {

 adc__initialize();

 // TODO This is the function you need to add to adc.h

 // You can configure burst mode for just the channel you are using

 adc__enable_burst_mode();

 // Configure a pin, such as P1.31 with FUNC 011 to route this pin as ADC channel 5

 // You can use gpio__construct_with_function() API from gpio.h

 pin_configure_adc_channel_as_io_pin(); // TODO You need to write this function

 while (1) {

 // Get the ADC reading using a new routine you created to read an ADC burst reading

 // TODO: You need to write the implementation of this function

 const uint16_t adc_value = adc__get_channel_reading_with_burst_mode(ADC__CHANNEL_2);

 vTaskDelay(100);

 }

}

void main(void) {

 xTaskCreate(adc_task, ...);

 vTaskStartScheduler();}

Part 2: Use FreeRTOS Queues to communicate between tasks

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/queues

#include "adc.h"

#include "FreeRTOS.h"

#include "task.h"

#include "queue.h"

// This is the queue handle we will need for the xQueue Send/Receive API

static QueueHandle_t adc_to_pwm_task_queue;

void adc_task(void *p) {

 // NOTE: Reuse the code from Part 1

 int adc_reading = 0; // Note that this 'adc_reading' is not the same variable as the one from adc_task

 while (1) {

 // Implement code to send potentiometer value on the queue

 // a) read ADC input to 'int adc_reading'

 // b) Send to queue: xQueueSend(adc_to_pwm_task_queue, &adc_reading, 0);

 vTaskDelay(100);

 }

}

void pwm_task(void *p) {

 // NOTE: Reuse the code from Part 0

 int adc_reading = 0;

 while (1) {

 // Implement code to receive potentiometer value from queue

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__data_flow.png

At this point, you should have the following structure in place:

ADC task is reading the potentiometer ADC channel, and sending its values over to a queue
PWM task is reading from the queue

Your next step is:

PWM task should read the ADC queue value, and control the an LED

Minimal requirement is to use a single potentiometer, and vary the light output of an LED using a PWM. For
extra credit, you may use 3 PWM pins to control an RGB led and create color combinations using a single
potentiometer.

Make sure your Part 3 requirements are completed

pwm_task should print the values of MR0, and the match register used to alter the PWM LEDs
For example, MR1 may be used to control P2.0, so you will print MR0, and MR1

Use memory mapped LPC_PWM registers from lpc40xx.h
Make sure BURST MODE is enabled correctly.

adc_task should convert the digital value to a voltage value (such as 1.653 volts) and print it out to the

 if (xQueueReceive(adc_to_pwm_task_queue, &adc_reading, 100)) {

 }

 // We do not need task delay because our queue API will put task to sleep when there is no data in the queue

 // vTaskDelay(100);

 }

}

void main(void) {

 // Queue will only hold 1 integer

 adc_to_pwm_task_queue = xQueueCreate(1, sizeof(int));

 xTaskCreate(adc_task, ...);

 xTaskCreate(pwm_task, ...);

 vTaskStartScheduler();}

Part 3: Allow the Potentiometer to control the RGB LED

Final Requirements

serial console
Remember that your VREF for ADC is 3.3, and you can use ratio to find the voltage value

adc_voltage / 3.3 = adc_reading / 4095

Revision #29

Created 2 years ago by Preet Kang

Updated 1 year ago by Huy Nguyen

http://books.socialledge.com/user/8
http://books.socialledge.com/user/15

