
This tutorial demonstrates how to use interrupts on a processor. In general, you will understand the concept
behind interrupts on any processor, but we will use the SJ-One board as an example.

An interrupt is the hardware capability of a CPU to break the normal flow of software to attend an urgent
request.

The science behind interrupts lies in the hardware that allows the CPU to be interrupted. Each peripheral in a
microcontroller may be able to assert an interrupt to the CPU core, and then the CPU core would jump to the
corresponding interrupt service routine (ISR) to service the interrupt.

The following steps demonstrate what happens when an interrupt occurs :

CPU manipulates the PC (program counter) to jump to the ISR
IMPORTANT: CPU will disable interrupts (or that priority level's interrupts until end of ISR)
Registers are saved before running the ISR (pushed onto the stack)
ISR is run
Registers are restored (popped from stack)
Interrupts are re-enabled (or that priority level's interrupt is re-enabled)

On some processors, the savings and restoring of registers is a manual step and the compiler would help you
do it. You can google "GCC interrupt attribute" to study this topic further. On SJ-One board, which uses
LPC17xx (ARM Cortex M3), this step is automatically taken care of by the CPU hardware.

Nested Vector Interrupt
Controller (NVIC)
Objective

What is an interrupt?

ISR Procedure

Figure 1. Nested Interrupt Processing

Nested Vector Interrupt Controllers or NVIC for short, have two properties:

Can handle multiple interrupts.
The number of interrupts implemented is device dependent.

A programmable priority level for each interrupt.
A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.

Level and pulse detection of interrupt signals.
Grouping of priority values into group priority and sub-priority fields.

This means that interrupts of the same priority are grouped together and do not preempt each other.
Each interrupt also has a sub-priority field which is used to figure out the run order of pending interrupts
of the same priority.

Interrupt tail-chaining.
This enables back-to-back interrupt processing without the overhead of state saving and restoration
between interrupts.
This saves us from the step of having to restore and then save the registers again.

An external Non-maskable interrupt (NMI)

Nested Vector Interrupt Controller

http://slideplayer.com/slide/7479262/24/images/20/Multiple+Interrupts+–+Nested+Interrupt+Processing.jpg

Figure 2. Multiple Interrupt Processing

Now that we understand how the CPU hardware services interrupts, we need to define how we inform the CPU
WHERE our ISR function is located at.

This table is nothing but addresses of functions that correspond to the microcontroller interrupts. Specific
interrupts use specific "slots" in this table, and we have to populate these spots with our software functions that
service the interrupts.

NVIC Interrupt Example

The SW to HW Connection

Interrupt Vector Table

https://en-us.knowledgebase.renesas.com/@api/deki/files/1365/int2.gif?revision=1&size=bestfit&width=416&height=336
http://www.socialledge.com/sjsu/index.php?title=File:Tutorial_interrupts_vec_table.png

Figure 3. HW Interrupt Vector Table

The using a linker script and compiler directives (commands for the compiler), the compiler is able to place the
software interrupt vector table at a specific location that the CPU expects the interrupt vector table to be
located at. This connects the dots about how the CPU is able to determine WHERE your interrupt service
routines are located at. From there on, anytime a specific interrupt occurs, the CPU is able to fetch the address
and make the JUMP.

SJOne (LPC17xx) Example

/**

 * CPU interrupt vector table that is loaded at the beginning of the CPU start

 * location by using the linker script that will place it at the isr_vector location.

 * CPU loads the stack pointer and begins execution from Reset vector.

 */

extern void (* const g_pfnVectors[])(void);

__attribute__ ((section(".isr_vector")))

void (* const g_pfnVectors[])(void) =

{

 // Core Level - CM3

 &_vStackTop, // The initial stack pointer

 isr_reset, // The reset handler

 isr_nmi, // The NMI handler

 isr_hard_fault, // The hard fault handler

 isr_mem_fault, // The MPU fault handler

 isr_bus_fault, // The bus fault handler

 isr_usage_fault, // The usage fault handler

 0, // Reserved

 0, // Reserved

 0, // Reserved

 0, // Reserved

 vPortSVCHandler, // FreeRTOS SVC-call handler (naked function so needs direct call - not a wrapper)

 isr_debug_mon, // Debug monitor handler

 0, // Reserved

 xPortPendSVHandler, // FreeRTOS PendSV handler (naked function so needs direct call - not a wrapper)

 isr_sys_tick, // FreeRTOS SysTick handler (we enclose inside a wrapper to track OS overhead)

 // Chip Level - LPC17xx - common ISR that will call the real ISR

 isr_forwarder_routine, // 16, 0x40 - WDT

 isr_forwarder_routine, // 17, 0x44 - TIMER0

 isr_forwarder_routine, // 18, 0x48 - TIMER1

 isr_forwarder_routine, // 19, 0x4c - TIMER2

 isr_forwarder_routine, // 20, 0x50 - TIMER3

 isr_forwarder_routine, // 21, 0x54 - UART0

 isr_forwarder_routine, // 22, 0x58 - UART1

 isr_forwarder_routine, // 23, 0x5c - UART2

 isr_forwarder_routine, // 24, 0x60 - UART3

 isr_forwarder_routine, // 25, 0x64 - PWM1

 isr_forwarder_routine, // 26, 0x68 - I2C0

 isr_forwarder_routine, // 27, 0x6c - I2C1

 isr_forwarder_routine, // 28, 0x70 - I2C2

 isr_forwarder_routine, // 29, 0x74 - SPI

 isr_forwarder_routine, // 30, 0x78 - SSP0

 isr_forwarder_routine, // 31, 0x7c - SSP1

 isr_forwarder_routine, // 32, 0x80 - PLL0 (Main PLL)

 isr_forwarder_routine, // 33, 0x84 - RTC

 isr_forwarder_routine, // 34, 0x88 - EINT0

 isr_forwarder_routine, // 35, 0x8c - EINT1

 isr_forwarder_routine, // 36, 0x90 - EINT2

 isr_forwarder_routine, // 37, 0x94 - EINT3

 isr_forwarder_routine, // 38, 0x98 - ADC

 isr_forwarder_routine, // 39, 0x9c - BOD

 isr_forwarder_routine, // 40, 0xA0 - USB

 isr_forwarder_routine, // 41, 0xa4 - CAN

 isr_forwarder_routine, // 42, 0xa8 - GP DMA

 isr_forwarder_routine, // 43, 0xac - I2S

 isr_forwarder_routine, // 44, 0xb0 - Ethernet

 isr_forwarder_routine, // 45, 0xb4 - RITINT

 isr_forwarder_routine, // 46, 0xb8 - Motor Control PWM

 isr_forwarder_routine, // 47, 0xbc - Quadrature Encoder

 isr_forwarder_routine, // 48, 0xc0 - PLL1 (USB PLL)

 isr_forwarder_routine, // 49, 0xc4 - USB Activity interrupt to wakeup

 isr_forwarder_routine, // 50, 0xc8 - CAN Activity interrupt to wakeup};

Code Block 1. Software Interrupt Vector Table

NOTE: that a vector table is really just a lookup table that hardware utilizes.

?

Two Methods to setup an ISR on the SJOne

All of the methods require that you run this function to allow the NVIC to accept a particular interrupt
request.

NVIC_EnableIRQ(EINT3_IRQn);

Where the input is the IRQ number. This can be found in the LCP17xx.h file. Search for enum IRQn.

?

Method 1. Modify IVT

DO NOT DO THIS, unless you really know what you are doing. The ISR forwarder works with
FreeRTOS to distinguish CPU utilization between ISRs and tasks.

I highly discourage modifying the startup.cpp and modifying the vector tables directly. Its not dynamic
is less manageable in that, if you switch projects and the ISR doesn't exist, the compiler will through an
error.

?

IVT modify

/* You will need to include the header file that holds the ISR for this to work */

#include "my_isr.h"

extern void (* const g_pfnVectors[])(void);

__attribute__ ((section(".isr_vector")))

void (* const g_pfnVectors[])(void) =

{

 // Core Level - CM3

 &_vStackTop, // The initial stack pointer

 isr_reset, // The reset handler

 isr_nmi, // The NMI handler

 isr_hard_fault, // The hard fault handler

 isr_mem_fault, // The MPU fault handler

 isr_bus_fault, // The bus fault handler

 isr_usage_fault, // The usage fault handler

 0, // Reserved

 0, // Reserved

 0, // Reserved

 0, // Reserved

 vPortSVCHandler, // FreeRTOS SVC-call handler (naked function so needs direct call - not a wrapper)

 isr_debug_mon, // Debug monitor handler

 0, // Reserved

 xPortPendSVHandler, // FreeRTOS PendSV handler (naked function so needs direct call - not a wrapper)

 isr_sys_tick, // FreeRTOS SysTick handler (we enclose inside a wrapper to track OS overhead)

 // Chip Level - LPC17xx - common ISR that will call the real ISR

 isr_forwarder_routine, // 16, 0x40 - WDT

 isr_forwarder_routine, // 17, 0x44 - TIMER0

 isr_forwarder_routine, // 18, 0x48 - TIMER1

 isr_forwarder_routine, // 19, 0x4c - TIMER2

 isr_forwarder_routine, // 20, 0x50 - TIMER3

 isr_forwarder_routine, // 21, 0x54 - UART0

 isr_forwarder_routine, // 22, 0x58 - UART1

 isr_forwarder_routine, // 23, 0x5c - UART2

 isr_forwarder_routine, // 24, 0x60 - UART3

 isr_forwarder_routine, // 25, 0x64 - PWM1

 isr_forwarder_routine, // 26, 0x68 - I2C0

 isr_forwarder_routine, // 27, 0x6c - I2C1

 isr_forwarder_routine, // 28, 0x70 - I2C2

 isr_forwarder_routine, // 29, 0x74 - SPI

 isr_forwarder_routine, // 30, 0x78 - SSP0

 isr_forwarder_routine, // 31, 0x7c - SSP1

 isr_forwarder_routine, // 32, 0x80 - PLL0 (Main PLL)

 isr_forwarder_routine, // 33, 0x84 - RTC

 isr_forwarder_routine, // 34, 0x88 - EINT0

 isr_forwarder_routine, // 35, 0x8c - EINT1

 isr_forwarder_routine, // 36, 0x90 - EINT2

 runMyISR, // 37, 0x94 - EINT3 <---- NOTICE how I changed the name here

 isr_forwarder_routine, // 38, 0x98 - ADC

 isr_forwarder_routine, // 39, 0x9c - BOD

 isr_forwarder_routine, // 40, 0xA0 - USB

Code Block 3. Weak Function Override Template

The EINT3_IRQn symbol is defined in an enumeration in LPC17xx.h. All you need to do is specify the IRQ
number and the function you want to act as an ISR. This will then swap out the previous ISR with your function.

 isr_forwarder_routine, // 41, 0xa4 - CAN

 isr_forwarder_routine, // 42, 0xa8 - GP DMA

 isr_forwarder_routine, // 43, 0xac - I2S

 isr_forwarder_routine, // 44, 0xb0 - Ethernet

 isr_forwarder_routine, // 45, 0xb4 - RITINT

 isr_forwarder_routine, // 46, 0xb8 - Motor Control PWM

 isr_forwarder_routine, // 47, 0xbc - Quadrature Encoder

 isr_forwarder_routine, // 48, 0xc0 - PLL1 (USB PLL)

 isr_forwarder_routine, // 49, 0xc4 - USB Activity interrupt to wakeup

 isr_forwarder_routine, // 50, 0xc8 - CAN Activity interrupt to wakeup};

Method 2. ISR Register Function

This is the best option! Please use this option almost always!

?

/**

 * Just your run-of-the-mill function

 */

void myEINT3ISR(void)

{

 doSomething();

 clearInterruptFlag();

}

int main()

{

 /**

 * Find the IRQ number for the interrupt you want to define.

 * In this case, we want to override IRQ 0x98 EINT3

 * Then specify a function pointer that will act as your ISR

 */

 isr_register(EINT3_IRQn, myEINT3ISR);

Code Block 5. Weak Function Override Template

PROS CONS

Can dynamically change ISR during runtime.
Does not disturb core library files in the process of
adding/changing ISRs.

Always try to prevent changes to the core libraries.
Does not cause compiler errors.
Your ISR cpu utilization is tracked.

Must wait until main is called before ISR is registered
Interrupt events could happen before main begins.

Do very little inside an ISR. When you are inside an ISR, the whole system is blocked (other than higher priority
interrupts). If you spend too much time inside the ISR, then you are destroying the real-time operating system
principle and everything gets clogged.

With that said, here is the general guideline:

DO NOT POLL FOR ANYTHING! Try to keep loops as small as possible. Note that printing data over UART
can freeze the entire system, including the RTOS for that duration. For instance, printing 4 chars may take
1ms at 38400bps.

If you are using FreeRTOS API, you must use FromISR functions only! If a FromISR function does not exist,
then don't use that API.

Clear the source of the interrupt. For example, if interrupt was for rising edge of a pin, clear the "rising edge" bit
such that you will not re-enter into the same interrupt function.

It is a popular scheme to have an ISR quickly exit, and then resume a task or thread to process the event. For

 NVIC_EnableIRQ(EINT3_IRQn);}

What to do inside an ISR

Short as possible

FreeRTOS API calls

Clear Interrupt Sources

If you don't do this, your interrupt will get stuck in an infinite ISR call loop. For the Port interrupts, this
can be done by writing to the IntClr registers.

?

ISR processing inside a FreeRTOS Task

example, if we wanted to write a file upon a button press, we don't want to do that inside an ISR because it
would take too long and block the system. What we can utilize a wait on semaphore design pattern.

What you may argue with the example below is that we do not process the ISR immediately, and therefore
delay the processing. But you can tackle this scenario by resuming a HIGHEST priority task. Immediately, after
the ISR exits, due to the ISR "yield", FreeRTOS will resume the high priority task immediately rather than
servicing another task

Code Block 6. Wait on Semaphore ISR design pattern example

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489b/CACDDJHB.html

/* Create the semaphore in main() */

SemaphoreHandle_t button_press_semaphore = NULL;

void myButtonPressISR(void)

{

 long yield = 0;

 xSemaphoreGiveFromISR(button_press_semaphore, &yield);

 portYIELD_FROM_ISR(yield);

}

void vButtonPressTask(void *pvParameter)

{

 while(1)

 {

 if (xSemaphoreTake(button_press_semaphore, portMAX_DELAY))

 {

 /* Process the interrupt */

 }

 }

}

void main(void)

{

 button_press_semaphore = xSemaphoreCreateBinary();

 /* TODO: Hook up myButtonPressISR() using eint.h */

 /* TODO: Create vButtonPressTask() and start FreeRTOS scheduler */}

Resources

Revision #17

Created 1 year ago by Admin

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489b/CACDDJHB.html
http://books.socialledge.com/user/1

Updated 11 months ago by Preet Kang

http://books.socialledge.com/user/8

