
This tutorial demonstrates how to use interrupts on a processor. In general, you will understand the concept
behind interrupts on any processor, but we will use the SJ2 board as an example.

An interrupt is the hardware capability of a CPU to break the normal flow of software to attend an urgent
request.

The science behind interrupts lies in the hardware that allows the CPU to be interrupted. Each peripheral in a
micro-controller may be able to assert an interrupt to the CPU core, and then the CPU core would jump to the
corresponding interrupt service routine (ISR) to service the interrupt.

The following steps demonstrate what happens when an interrupt occurs :

CPU manipulates the PC (program counter) to jump to the ISR
IMPORTANT: CPU will disable interrupts (or that priority level's interrupts until the end of ISR)

Nested Vector Interrupt
Controller (NVIC)
Objective

What is an interrupt?

void main_loop(void) {

 while (forever) {

 logic();

 another_function();

 // ...

 }

}

// Interrupt on button-press

void button_press_interrupt(void) {}

ISR Procedure

Registers are saved before running the ISR (pushed onto the stack)
ISR is run
Registers are restored (popped from stack)
Interrupts are re-enabled (or that priority level's interrupt is re-enabled)

On some processors, the savings and restoring of registers is a manual step and the compiler would help you
do it. You can google the "GCC interrupt attribute" to study this topic further. On the SJ2 board, which uses
LPC40xx (ARM Cortex M4), this step is automatically taken care of by the CPU hardware.

Figure 1. Nested Interrupt Processing

Nested Vector Interrupt Controllers or NVIC for short, have two properties:

Can handle multiple interrupts.
The number of interrupts implemented is device-dependent.

A programmable priority level for each interrupt.
A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority.

Level and pulse detection of interrupt signals.
Grouping of priority values into group priority and sub-priority fields.

Nested Vector Interrupt Controller

http://slideplayer.com/slide/7479262/24/images/20/Multiple+Interrupts+–+Nested+Interrupt+Processing.jpg

This means that interrupts of the same priority are grouped together and do not preempt each other.
Each interrupt also has a sub-priority field which is used to figure out the run order of pending interrupts
of the same priority.

Interrupt tail-chaining.
This enables back-to-back interrupt processing without the overhead of state saving and restoration
between interrupts.
This saves us from the step of having to restore and then save the registers again.

An external Non-maskable interrupt (NMI)

Figure 2. Multiple Interrupt Processing

Now that we understand how the CPU hardware services interrupts, we need to define how we inform the CPU
WHERE our ISR function is located at.

This table is nothing but addresses of functions that correspond to the microcontroller interrupts. Specific
interrupts use specific "slots" in this table, and we have to populate these spots with our software functions that
service the interrupts.

NVIC Interrupt Example

The SW to HW Connection

Interrupt Vector Table

https://en-us.knowledgebase.renesas.com/@api/deki/files/1365/int2.gif?revision=1&size=bestfit&width=416&height=336

Figure 3. HW Interrupt Vector Table

Using a linker script and compiler directives (commands for the compiler), the compiler is able to place the
software interrupt vector table at a specific location that the CPU expects the interrupt vector table to be
located at. This connects the dots about how the CPU is able to determine WHERE your interrupt service
routines are located at. From there on, anytime a specific interrupt occurs, the CPU is able to fetch the address
and make the JUMP.

SJTwo (LPC40xx) Example

static void halt(void);

typedef void (*void_func_ptr_t)(void);

__attribute__((section(".interrupt_vector_table"))) void_func_ptr_t interrupt_vector_table[] = {

 /**

 * Core interrupt vectors - Mandated by Cortex-M4 core

 */

http://www.socialledge.com/sjsu/index.php?title=File:Tutorial_interrupts_vec_table.png

 (void_func_ptr_t)&_estack, // 0 ARM: Initial stack pointer

 cpu_startup_entry_point, // 1 ARM: Initial program counter

 halt, // 2 ARM: Non-maskable interrupt

 halt, // 3 ARM: Hard fault

 halt, // 4 ARM: Memory management fault

 halt, // 5 ARM: Bus fault

 halt, // 6 ARM: Usage fault

 halt, // 7 ARM: Reserved

 halt, // 8 ARM: Reserved

 halt, // 9 ARM: Reserved

 halt, // 10 ARM: Reserved

 vPortSVCHandler, // 11 ARM: Supervisor call (SVCall)

 halt, // 12 ARM: Debug monitor

 halt, // 13 ARM: Reserved

 xPortPendSVHandler, // 14 ARM: Pendable request for system service (PendableSrvReq)

 xPortSysTickHandler, // 15 ARM: System Tick Timer (SysTick)

 /**

 * Device interrupt vectors - routed to a 'dispatcher' that allows users to register their ISR at this vector

 * You can 'hijack' this vector and directly install your interrupt service routine

 */

 lpc_peripheral__interrupt_dispatcher, // 16 WDT

 lpc_peripheral__interrupt_dispatcher, // 17 Timer 0

 lpc_peripheral__interrupt_dispatcher, // 18 Timer 1

 lpc_peripheral__interrupt_dispatcher, // 19 Timer 2

 lpc_peripheral__interrupt_dispatcher, // 20 Timer 3

 lpc_peripheral__interrupt_dispatcher, // 21 UART 0

 lpc_peripheral__interrupt_dispatcher, // 22 UART 1

 lpc_peripheral__interrupt_dispatcher, // 23 UART 2

 lpc_peripheral__interrupt_dispatcher, // 24 UART 3

 lpc_peripheral__interrupt_dispatcher, // 25 PWM 1

 lpc_peripheral__interrupt_dispatcher, // 26 I2C 0

 lpc_peripheral__interrupt_dispatcher, // 27 I2C 1

 lpc_peripheral__interrupt_dispatcher, // 28 I2C 2

 lpc_peripheral__interrupt_dispatcher, // 29 UNUSED

 lpc_peripheral__interrupt_dispatcher, // 30 SSP 0

 lpc_peripheral__interrupt_dispatcher, // 31 SSP 1

Code Block 1. Software Interrupt Vector Table

 lpc_peripheral__interrupt_dispatcher, // 32 PLL 0

 lpc_peripheral__interrupt_dispatcher, // 33 RTC and Event Monitor/Recorder

 lpc_peripheral__interrupt_dispatcher, // 34 External Interrupt 0 (EINT 0)

 lpc_peripheral__interrupt_dispatcher, // 35 External Interrupt 1 (EINT 1)

 lpc_peripheral__interrupt_dispatcher, // 36 External Interrupt 2 (EINT 2)

 lpc_peripheral__interrupt_dispatcher, // 37 External Interrupt 3 (EINT 3)

 lpc_peripheral__interrupt_dispatcher, // 38 ADC

 lpc_peripheral__interrupt_dispatcher, // 39 BOD

 lpc_peripheral__interrupt_dispatcher, // 40 USB

 lpc_peripheral__interrupt_dispatcher, // 41 CAN

 lpc_peripheral__interrupt_dispatcher, // 42 DMA Controller

 lpc_peripheral__interrupt_dispatcher, // 43 I2S

 lpc_peripheral__interrupt_dispatcher, // 44 Ethernet

 lpc_peripheral__interrupt_dispatcher, // 45 SD Card Interface

 lpc_peripheral__interrupt_dispatcher, // 46 Motor Control PWM

 lpc_peripheral__interrupt_dispatcher, // 47 PLL 1

 lpc_peripheral__interrupt_dispatcher, // 48 Quadrature Encoder

 lpc_peripheral__interrupt_dispatcher, // 49 USB Activity

 lpc_peripheral__interrupt_dispatcher, // 50 CAN Activity

 lpc_peripheral__interrupt_dispatcher, // 51 UART 4

 lpc_peripheral__interrupt_dispatcher, // 52 SSP 2

 lpc_peripheral__interrupt_dispatcher, // 53 LCD

 lpc_peripheral__interrupt_dispatcher, // 54 GPIO Interrupt

 lpc_peripheral__interrupt_dispatcher, // 55 PWM 0

 lpc_peripheral__interrupt_dispatcher, // 56 EEPROM

};

static void halt(void) {

 // This statement resolves compiler warning: variable define but not used

 (void)interrupt_vector_table;

 while (true) {

 }}

NOTE: that a vector table is really just a lookup table that hardware utilizes.?

Two Methods to set up an ISR on the SJ2

All of the methods require that you run this function to allow the NVIC to accept a particular interrupt
request.

NVIC_EnableIRQ(EINT3_IRQn);

Where the input is the IRQ number. This can be found in the LCP40xx.h file. Search for enum IRQn.

?

Method 1. Modify IVT

We discourage modifying the interrupt_vector_table.c (or startup.cpp for SJ2) vector tables
directly.

?

IVT modify

__attribute__((section(".interrupt_vector_table"))) void_func_ptr_t interrupt_vector_table[] = {

 /**

 * Core interrupt vectors

 */

 (void_func_ptr_t)&_estack, // 0 ARM: Initial stack pointer

 cpu_startup_entry_point, // 1 ARM: Initial program counter

 halt, // 2 ARM: Non-maskable interrupt

 halt, // 3 ARM: Hard fault

 halt, // 4 ARM: Memory management fault

 halt, // 5 ARM: Bus fault

 halt, // 6 ARM: Usage fault

 halt, // 7 ARM: Reserved

 halt, // 8 ARM: Reserved

 halt, // 9 ARM: Reserved

 halt, // 10 ARM: Reserved

 vPortSVCHandler, // 11 ARM: Supervisor call (SVCall)

 halt, // 12 ARM: Debug monitor

 halt, // 13 ARM: Reserved

Code Block 3. Weak Function Override Template

There is a simple API defined at lpc_peripherals.h that you can use. Be sure to check the implementation of
this code module to actually understand what it is doing.

 xPortPendSVHandler, // 14 ARM: Pendable request for system service (PendableSrvReq)

 xPortSysTickHandler, // 15 ARM: System Tick Timer (SysTick)

 /**

 * Device interrupt vectors

 */

 lpc_peripheral__interrupt_dispatcher, // 16 WDT

 lpc_peripheral__interrupt_dispatcher, // 17 Timer 0

 lpc_peripheral__interrupt_dispatcher, // 18 Timer 1

 lpc_peripheral__interrupt_dispatcher, // 19 Timer 2

 lpc_peripheral__interrupt_dispatcher, // 20 Timer 3

 lpc_peripheral__interrupt_dispatcher, // 21 UART 0

 lpc_peripheral__interrupt_dispatcher, // 22 UART 1

 lpc_peripheral__interrupt_dispatcher, // 23 UART 2

 my_own_uart3_interrupt, // 24 UART 3 <-------------------- Install your function to the ISR vector directly

 // ...};

Method 2. ISR Register Function

This is the best option! Please use this option almost always!

?

// Just your run-of-the-mill function

void my_uart3_isr(void) {

 do_something();

 clear_uart3_interrupt();

}

#include "lpc_peripherals.h"

int main() {

 lpc_peripheral__enable_interrupt(LPC_PERIPHERAL__UART3, my_uart3_isr);

Code Block 5. Weak Function Override Template

PROS CONS

Can dynamically change ISR during runtime.
Does not disturb core library files in the process of
adding/changing ISRs.

Always try to prevent changes to the core libraries.
Does not cause compiler errors.
Your ISR cpu utilization is tracked.

Must wait until main is called before ISR is registered
Interrupt events could happen before main begins.

Do very little inside an ISR. When you are inside an ISR, the whole system is blocked (other than higher priority
interrupts). If you spend too much time inside the ISR, then you are destroying the real-time operating system
principle and everything gets clogged.

With that said, here is the general guideline:

DO NOT POLL FOR ANYTHING! Try to keep loops as small as possible. Note that printing data over UART
can freeze the entire system, including the RTOS for that duration. For instance, printing 4 chars may take
1ms at 38400bps.

If you are using FreeRTOS API, you must use FromISR functions only! If a FromISR function does not exist,
then don't use that API.

Clear the source of the interrupt. For example, if interrupt was for rising edge of a pin, clear the "rising edge" bit
such that you will not re-enter into the same interrupt function.

It is a popular scheme to have an ISR quickly exit, and then resume a task or thread to process the event. For

 // ... rest of the code}

What to do inside an ISR

Short as possible

FreeRTOS API calls

Clear Interrupt Sources

If you don't do this, your interrupt will get stuck in an infinite ISR call loop. For the Port interrupts, this
can be done by writing to the IntClr registers.

?

ISR processing inside a FreeRTOS Task

example, if we wanted to write a file upon a button press, we don't want to do that inside an ISR because it
would take too long and block the system. What we can utilize a wait on semaphore design pattern.

What you may argue with the example below is that we do not process the ISR immediately, and therefore
delay the processing. But you can tackle this scenario by resuming a HIGHEST priority task. Immediately, after
the ISR exits, due to the ISR "yield", FreeRTOS will resume the high priority task immediately rather than
servicing another task

Code Block 6. Wait on Semaphore ISR design pattern example

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489b/CACDDJHB.html

/* Create the semaphore in main() */

SemaphoreHandle_t button_press_semaphore = NULL;

void my_button_press_isr(void) {

 long yield = 0;

 xSemaphoreGiveFromISR(button_press_semaphore, &yield);

 portYIELD_FROM_ISR(yield);

}

void button_task(void *pvParameter)

{

 while(1) {

 if (xSemaphoreTake(button_press_semaphore, portMAX_DELAY)) {

 /* Process the interrupt */

 }

 }

}

void main(void)

{

 button_press_semaphore = xSemaphoreCreateBinary();

 /* TODO: Hook up my_button_press_isr() as an interrupt */

 /* TODO: Create button_task() and start FreeRTOS scheduler */}

Resources

Revision #29

Created 6 years ago by Admin

Updated 1 month ago by Preet Kang

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0489b/CACDDJHB.html
http://books.socialledge.com/user/1
http://books.socialledge.com/user/8

