
There are standard queues, or <vector> in C++, but RTOS queues should almost always be used in your
application because they are thread-safe (no race conditions with multiple tasks), and they co-operate with
your RTOS to schedule the tasks. For instance, your task could optionally sleep while receiving data if the
queue is empty, or it can sleep while sending the data if the queue is full.

Semaphores may be used to "signal" between two contexts (tasks or interrupts), but they do not contain any
payload. For example, for an application that captures a keystroke inside of an interrupt, it could "signal" the
data processing task to awake upon the semaphore, however, there is no payload associated with it to identify
what keystroke was input. With an RTOS queue, the data processing task can wake upon a payload and
process a particular keystroke.

The data-gathering tasks can simply send the key-press detected to the queue, and the processing task can
receive items from the queue, and perform the corresponding action. Moreover, if there are no items in the
queue, the consumer task (the processing one) can sleep until data becomes available. You can see how this
scheme lends itself well to having multiple ISRs queue up data for a task (or multiple tasks) to handle.

After looking through the sample code below, you should then watch this video.

Let's study an example of two tasks communicating to each other over a queue.

Queues
RTOS Queues

Queues vs. Semaphore for "Signalling"

Example Queue usage for Tasks

QueueHandle_t q;

void producer(void *p)

{

 int x = 0;

 while (1) {

 vTaskDelay(100);

http://www.youtube.com/watch?v=8lIpI30Tj-g

 xQueueSend(q, &x, 0); // TODO: Find out the significance of the parameters of xQueueSend()

 ++x;

 }

}

void consumer(void *p)

{

 while (1) {

 // We do not need vTaskDelay() because this task will sleep for up to 100ms until there is an item in the queue

 if (xQueueReceive(q, &x, 100)) {

 printf("Got %i\n", x);

 }

 else {

 puts("Timeout --> No data received");

 }

 }

}

void main(void)

{

 // Queue handle is not valid until you create it

 q = xQueueCreate(10, sizeof(int));

}

Example Queue usage with Interrupts
// Queue API is special if you are inside an ISR

void uart_rx_isr(void)

{

 xQueueSendFromISR(q, &x, NULL); // TODO: Find out the significance of the parameters

}

void queue_rx_task(void *p)

{

 int x;

 // Receive is the usual receive because we are not inside an ISR

 while (1) {

Queue Management (Amazon Docs)

Queue API (FreeRTOS Docs)

 xQueueReceive(q, &x, portMAX_DELAY);

 }

}

Additional Information

Revision #7

Created 5 months ago by Admin

Updated 3 months ago by Preet Kang

https://docs.aws.amazon.com/freertos-kernel/latest/dg/queue-management.html
https://www.freertos.org/a00018.html
http://books.socialledge.com/user/1
http://books.socialledge.com/user/8

