
SPI is a high-speed, full-duplex bus that uses a minimum of 3 wires to exchange data (and a number of device-
selected wires). The popularity of this bus rose when SD cards (and its variants ie: micro-sd) officially 
supported this bus according to the SD specifications. SPI allows microcontrollers to communicate with multiple 
slave devices.

 

 

Figure 1. SPI Signals

MASTER Pin Name SLAVE Pin Name Pin Function

SPI (Serial & Peripheral 
Interface)
What is SPI

SPI Bus Signals



MOSI SI
Master Out Slave In (driven by master), 
this pin is used to send sends data to the 
slave device.

MISO SO
Master In Slave Out (driven by slave), this 
pin is used by the slave to send data to 
the master device.

SCLK CLK
Serial Clock (driven by master), clock that 
signals when to read MISO and MOSI 
lines 

CS CS

Chip Select (driven by master), used to 
indicate to the slave that you want to talk 
to it and not another slave device. This will 
activate the slave's MISO line. MISO line 
is set to h-z if this is not asserted. MISO is 
set to high if this signal is asserted.

  INT

Interrupt (Optional) (driven by slave), an 
interrupt signal to alert the master that the 
slave device wants to communicate. Not 
all devices have this. This is not always 
needed. This is not apart of the standard.

The SCK signal can reach speed of 24Mhz and beyond, however, SD cards are usually limited to 24Mhz 
according to the specifications. Furthermore, any signal over 24Mhz on a PCB requires special design 
consideration to make sure it will not deteriorate, thus 24Mhz is the usual maximum. Furthermore, you need a 
CPU twice as fast as the speed you wish to run to support it. For example, to run at 24Mhz SPI, we need 
48Mhz CPU or higher. Because each wire is driven directly (rather than open-collector), higher speeds can be 
attained compared to 400Khz I2C bus. 

Suppose that you wanted to interface a single SPI bus to three SD cards, the following will need to be done :

Connect all MOSI, MISO, and SCK lines together
Connect individual CS lines of three SD cards to SPI master (your processor)

It is also recommended to provide a weak pull-up resistor on each of the SPI wires otherwise some devices like 
an SD card may not work. 50K resistor should work, however, lower resistor value can achieve higher SPI 
speeds. 

 

Multi-slave bus



Figure 2. Typical SPI Bus (wikipedia SPI, user Cburnett)

The "CS" section of the SPI/SSP chapter describes the information if your microcontroller is going to be a slave 
on the SPI bus.  Since your LPC micro is a master in reality, please do not confuse the CS pin for the SPI slave 
functionality.  Even if the CS pin is actually used to CS the Adesto flash, it is just an ordinary GPIO and will not 
function as the one described in your SPI/SSP chapter.

Therefore, do not configure the "SSEL" in your PINSEL (or PIN function) since that is reserved for the case 
when your micro is an SPI Slave.  In your case, the same GPIO that has the "SSEL" capability is a simple 
GPIO to control the CS of the SPI Flash memory.

 

As a warning, if your firmware selects more than one SPI slave chip select, and they both attempt to 
drive the MISO line, since those lines are totem-pole (push-pull), there will be bus contention and could 
possibly destroy both SPI devices. 

?

SPI Timing Diagram 



Figure 3. SPI timing diagram 

SPI has a few timing modes in which data is qualified on the rising or falling edge. In this case, and most, we 
qualify the MOSI and MISO signals on the rising edge. For a whole transaction to be qualified, the ~CS  must 
be asserted. When the CS pin is pulled high (deasserted), the transaction is over and another transaction can 
be performed. This must be done for each transaction done by the master to the slave. 

The SPI is labeled as SSP on LPC17xx or LPC40xx User Manual due to historic reasons, and this chapter in 
the datasheet shows the software setup very well. After the SPI is initialized on the hardware pins, the next 
steps is to write an SPI function that will exchange a byte. Note that if the master wants to receive data, it 
must send a data byte out to get a data byte back. The moment we write to the DR (data register) of the SPI 
peripheral, the MOSI will begin to send out the data. At the same time, the MISO will capture the data byte 
back to the same DR register. In other words, SPI bus is a forced full-duplex bus.

High Speed:

There is no standard speed limit for SPI beyond how fast a Single-Ended Signal can propagate and 

Ensure that two transactions with the SPI device do not occur back to back without a delay. For 
instance, insert at least 1uS delay between successive DS and CS of another transaction.

?Why use SPI

Pros

https://en.wikipedia.org/wiki/Single-ended_signaling
https://en.wikipedia.org/wiki/Single-ended_signaling


how fast an SPI compatible device can react.
In other words, how fast can you talk over a wire and how fast can a slave device read a clock signal.

Simple:
Doesn't require special timing or a special state-machine to run. It doesn't really need hardware 
peripheral either. It can be bit-banged via GPIO.

Synchronous:
This communication standard utilizes a clock to qualify signals.

Full-Duplex:
Communication both ways. The slave to speak to the master at the same time that the master can speak 
to the slave device.

Multi-slave:
You can talk to as many slaves as you have chip selects.

IO/Pin Count:
IO count increases by one for each slave device you introduce, since each slave device needs a chip 
select. 
You also almost always need at least 4 wires for this communication protocol. 

There are some special cases that do not fit this but they are uncommon.
Master Only Control:

Although the communication protocol can allow for full-duplex communication, the only way for a slave 
device to be able to communicate with the master is if the master initiates communication.
A slave can only speak when spoken to.

 

Cons

Software Driver



Figure 2. SPI Driver from LPC40xx datasheet

Note that when we refer to SPI, we are referring to the SSP peripheral in the LPC user manual. 
SSP stands for Synchronous Serial Protocol and SPI is one of the synchronous serial protocols it can 
perform.

Study the schematic, and take a note of which pins have the SSP2 or SPI#2 peripheral pin-out. 
Note this down or draw this out.

Study and read the SSP2 LPC user manual chapter a few times
Study the schematic, and locate the CS pin for the SPI flash attached to SSP2, then write a simple GPIO 
driver for this to select and deselect this pin
Read the SPI flash datasheet that shows the SPI transactions for read/write, signature read etc. 

Rev.4 board has Adesto flash, and previous revisions have Atmel flash.

Preparation for the SPI driver

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-29-at-7.27.32-PM.png


 

Multitasking Warnings: if your software runs multiple tasks, and these tasks can access SPI, care 
needs to be taken because if two CS signals are asserted at the same time, hardware damage will 
occur. This leads to the topic of using a mutex (semaphore) under FreeRTOS and you can read the 

FreeRTOS tutorial to learn more.

?

Set the clock rate to be below the specification of the SPI device you are interfacing.

?

Revision #28 

Created 6 years ago by Admin

Updated 3 years ago by Huy Nguyen

http://www.socialledge.com/sjsu/index.php?title=FreeRTOS_Tutorial
http://books.socialledge.com/user/1
http://books.socialledge.com/user/15

