
SPI is a high-speed, full-duplex bus that uses a minimum of 3 wires to exchange data. The popularity of this 
bus rose when SD cards (and its variants ie: micro-sd) officially supported this bus according to the SD 
specifications. SPI allows microcontrollers to communicate with multiple slave devices.

 

 

Figure 1. SPI Signals

MASTER Pin Name SLAVE Pin Name Pin Function

SPI (Serial & Peripheral 
Interface)
What is SPI

SPI Bus Signals



MOSI SI
Master Out Slave In (driven by master), 
this pin is used to send sends data to the 
slave device.

MISO SO
Master In Slave Out (driven by slave), this 
pin is used by the slave to send data to 
the master device.

SCLK CLK
Serial Clock (driven by master), clock that 
signals when to read MISO and MOSI 
lines 

CS CS

Chip Select (driven by master), used to 
indicate to the slave that you want to talk 
to it and not another slave device. This will 
activate the slave's MISO line. MISO line 
is set to h-z if this is not asserted. MISO is 
set to high if this signal is asserted.

  INT

Interrupt (Optional) (driven by slave), an 
interrupt signal to alert the master that the 
slave device wants to communicate. Not 
all devices have this. This is not always 
needed. This is not apart of the standard.

The SCK signal can reach speed of 24Mhz and beyond, however, SD cards are usually limited to 24Mhz 
according to the specifications. Furthermore, any signal over 24Mhz on a PCB requires special design 
consideration to make sure it will not deteriorate, thus 24Mhz is the usual maximum. Furthermore, you need a 
CPU twice as fast as the speed you wish to run to support it. For example, to run at 24Mhz SPI, we need 
48Mhz CPU or higher. Because each wire is driven directly (rather than open-collector), higher speeds can be 
attained compared to 400Khz I2C bus. 

Suppose that you wanted to interface a single SPI bus to three SD cards, the following will need to be done :

Connect all MOSI, MISO, and SCK lines together
Connect individual CS lines of three SD cards to SPI master (your processor)

It is also recommended to provide a weak pull-up resistor on each of the SPI wires otherwise some devices like 
an SD card may not work. 50K resistor should work, however, lower resistor value can achieve higher SPI 
speeds. 

 

Multi-slave bus



Figure 2. Typical SPI Bus (wikipedia SPI, user Cburnett)

 

As a warning, if your firmware selects more than one SPI slave chip select, and they both attempt to 
drive the MISO line, since those lines are totem-pole (push-pull), there will be bus contention and could 
possibly destroy both SPI devices. 

?

The "CS" section of the SPI/SSP chapter describes the information if your microcontroller is going to be 
a slave on the SPI bus.  Since your LPC micro is a master in reality, please do not confuse the CS pin 
for the SPI slave functionality.  Even if the CS pin is actually used to CS the Adesto flash, it is just an 
ordinary GPIO and will not function as the one described in your SPI/SSP chapter.

Therefore, do not configure the "SSEL" in your PINSEL since that is reserved for the case when your 
micro is an SPI Slave.  In your case, the same GPIO that has the "SSEL" capability is a simple GPIO to 
control the CS of the SPI Flash memory.

?

SPI Timing Diagram 



Figure 3. SPI timing diagram 

SPI has a few timing modes in which data is qualified on the rising or falling edge. In this case, and most, we 
qualify the MOSI and MISO signals on the rising edge. For a whole transaction to be qualified, the ~CS  must 
be asserted. When the CS pin is pulled high (deasserted), the transaction is over and another transaction can 
be performed. This must be done for each transaction done by the master to the slave. 

The SPI is labeled as SSP on LPC17xx datasheet due to historic reasons, and this chapter in the datasheet 
shows the software setup very well. After the SPI is initialized on the hardware pins, the next steps is to write 
an spi function that will exchange a byte. Note that if the master wants to receive data, it must send a data byte 
out to get a data byte back. The moment we write to the DR (data register) of the SPI peripheral, the MOSI will 
begin to send out the data. At the same time, the MISO will capture the data byte back to the same DR 
register. In other words, SPI bus is a forced full-duplex bus.

High Speed:

For completing two transactions successfully, there is a minimum delay required after you do a 
chip_deselect() and chip_select(). If they are issued back to back, then 2nd transaction will not give you 
the right data from the slave.

?

Why use SPI

Pros



There is no standard speed limit for SPI beyond how fast a Single Ended Signal can propagate and 
how fast a SPI compatible device can react.
In other words, how fast can you talk over a wire and how fast can a slave device read a clock signal.

Simple:
Doesn't require special timing or a special state-machine to run. It doesn't really need a hardware 
peripheral either. It can be bit banged via GPIO.

Synchronous:
This communication standard utilizes a clock to qualify signals.

Full-Duplex:
Communication both ways. The slave to speak to the master at the same time that the master can speak 
to the slave device.

Multi-slave:
You can talk to as many slaves as you have chip selects.

IO/Pin Count:
IO count increases by one for each slave device you introduce, since each slave device needs a chip 
select. 
You also almost always need at least 4 wires for this communication protocol. 

There are some special cases that do not fit this but they are uncommon.
Master Only Control:

Although the communication protocol can allow for full duplex communication, the only way for a slave 
device to be able to communicate with the master is if the master initiates communication.
Slave can only speak when spoken to.

 

 

Cons

Software Driver

https://en.wikipedia.org/wiki/Single-ended_signaling
https://en.wikipedia.org/wiki/Single-ended_signaling


Figure 2. SPI Driver from LPC17xx datasheet

Note that when we refer to SPI, we are referring to the SSP peripheral in the LPC user manual. 
SSP stands for Synchronous Serial Protocol and SPI is one of the synchronous serial protocols it can 
perform.

Study the schematic, and take a note of which pins have the SSP1 or SPI#1 peripheral pin-out. 
Note this down or draw this out.

Study and read the SSP1 LPC user manual chapter a few times
Study the schematic, and locate the CS pin for the SPI flash attached to SSP1, then write a simple GPIO 
driver for this to select and deselect this pin
Read the SPI flash datasheet that shows the SPI transactions for read/write, signature read etc. 

Rev.4 board has Adesto flash, and previous revisions have Atmel flash.

Preparation for the SPI driver



 

Multitasking Warnings: if your software runs multiple tasks, and these tasks can access SPI, care 
needs to be taken because if two CS signals are asserted at the same time, hardware damage will 
occur. This leads to the topic of using a mutex (semaphore) under FreeRTOS and you can read the 

FreeRTOS tutorial to learn more.

?

Set the clock rate to be below the specification of the SPI device you are interfacing.

?

Revision #23 

Created 10 months ago by Admin

Updated 1 month ago by sree harsha

http://www.socialledge.com/sjsu/index.php?title=FreeRTOS_Tutorial
http://books.socialledge.com/user/1
http://books.socialledge.com/user/4

