
Get a practical experience with CAN bus communication
Create hardware circuitry necessary for the CAN bus

You need to work with your lab partner in this lab. Be sure to pair the program, and not work independently on
this lab.

CAN bus requires additional hardware that will be interfaced to your board. Your CAN controller has Rx and Tx
wires, and these are interfaces to a "CAN Transceiver" which translates the Tx wire to the CAN bus line. Note
that when this translation is performed, the CANH and CANL represent the state of the single Tx wire, and you
are basically at half-duplex CAN bus. At any time, you are either transmitting or receiving, but you cannot be
transmitting and receiving at the same time because CAN bus is a half-duplex bus. If you are actively
transmitting, the Rx wire represents your own transmission that is read back from CANH and CANL.

Reference the following starter code for details. To initialize the CAN driver, the easiest approach is to invoke

the init() function and then bypass the CAN message acceptance filter and receive all CAN frames that
arrive on the bus.

LAB: CAN bus
Objective

Part 0: Interface two boards over CAN transceiver

Part 1: Configure the CAN driver

http://books.socialledge.com/uploads/images/gallery/2020-03-Mar/CAN_Network.jpg

One thing you should do is that created a new code module such as can_bus_initializer.h Such that at the

periodic_callbacks__initialize() , you invoke a single function to initialize the CAN bus. This would make it
easier to add the unit-test for the periodic callbacks, and furthermore not create a blob software anti-pattern.

Setup your code in a 10 or 100Hz task:

Transmit a test message
Receive all messages enqueued by your CAN driver

This would empty out all messages you received, not including the message you transmitted

Reference the following starter code for details. Once again, you should actually create a new code module

called can_bus_message_handler.h . This file is definitely expected to grow because you will be handling a lot
more CAN message in your RC car's production code.

 Be careful of the following:

Since your periodic callback of 100Hz expects your function to return within 10 ms, you cannot block while
receiving data from the CAN bus

#include "can_bus.h"

void periodic_callbacks__initialize(void) {

 // TODO: You should refactor this initialization code to dedicated "can_bus_initializer.h" code module

 // Read can_bus.h for more details

 can__init(...);

 can_bypass_filter_accept_all_msgs(...);

 can_reset_bus(...);}

Part 2: Send and Receive messages

#include "can_bus.h"

void periodic_callbacks__100Hz(uint32_t callback_count) {

 // TODO: Send a message periodically

 can__tx(...);

 // Empty all messages received in a 100Hz slot

 while (can__rx(...)) {

 }}

Part 3: Simple CAN bus application

Build a meaningful communications' application
For example, if Board=A senses a switch pressed, then send a 1-byte message with 0xAA, otherwise,
send 0x00 if a button is not pressed

On Board-B, simply light up an LED (or otherwise turn it off) based on the CAN message data
For robustness, if the CAN Bus turns off, simply turn it back on at 1Hz (every 1000 ms)
You can be more creative here by sending tilt sensor readings from one board to another board and should
have the mindset to go "above and beyond"

This assignment gives you an overview of the practical use of the CAN Bus, and later, by utilizing the DBC file
and auto-generation of code, sending and receiving data becomes very easy.

While this provides bare-bones knowledge of how communication works, the future lectures will focus on the
application layer while abstracting away the details of CAN messages' data encoding and decoding.

Be sure to submit a Merge Request of your Git repository to get credit for the assignment.

Conclusion

Revision #8

Created 1 year ago by Preet Kang

Updated 1 month ago by vidushi

http://books.socialledge.com/user/8
http://books.socialledge.com/user/14

