
This article lists FreeRTOS APIs that are discouraged from being used.

[warning: this article is under construction]

Just because an API exists does not mean it should be used. Different programmers have different guidelines 
sometimes, but ultimately it is up to you to ensure that your RTOS application is performing deterministic 
operations. Operations such as dynamic memory usage, dynamic task or queue usage encourages the 
creation of non deterministic RTOS behavior, and becomes a maintenance issue.

Create or allocate all resources before the RTOS starts, and after the RTOS has started, avoid any API usage 
that can cause the system to fail.

 

Theoretically, you can create a task after the RTOS is running, and while the RTOS is running, you could 
delete a task. In practice, however, it is discouraged to create tasks, and then to delete tasks. A task should not 
be created if it is going to be deleted because there are better options to handle this scenario.

Let us use a practical example. Let us assume that there is a task responsible to play an MP3 song. In place of 
creating a task to do this work, and then to delete the task when the playback is completed, it is better to 
consider alternate options:

1. Let the task sleep on a semaphore (or a Queue). Once the tasks' work is done, one can block on the 
semaphore or queue again

2. Let the creator of the task also process the code that is meant to run by another dynamically created task

Similar to why we should not create or delete a task dynamically, a queue should not be created or deleted 
dynamically. Fundamentally, dynamic operations such as these encourage or create non-deterministic 
behavior. Furthermore, depending on the RTOS configuration, the queue may utilize dynamic memory, which 
may exist at one time, but may not exist at another time during the RTOS runtime.

Fundamental Guidance applies here which is to avoid allocating a resource during runtime. We do not want to 

APIs to avoid

Fundamental Guidance

Avoid Deletion API

vTaskDelete

vQueueDelete



deal with queue handles being valid, or invalid. We do not want to run into scenarios when a task is blocked on 
a queue, and then the queue is deleted to abruptly "pull the plug" and to compromise our running program.

 

A task priority should be set once while creating the task, and it should never be changed again. When tasks 
priorities change, it is hard to diagnose issues and figure out which tasks are using the CPU at any given time 
because the priorities are not constant and could be changing.

Using a mutex could alter task priorities, but that is something we can let the RTOS manage by itself. Using a 
mutex may cause tasks to inherit and disinherit priority of another task, but the RTOS would do that under 
certain situations to avoid priority inversion issue. This should be considered outside of a developer's control as 
it is the behavior of the RTOS that is well tested.

If you run into a situation when a task needs to perform some work at a higher priority level, then you could 
interface to this piece of code using an RTOS construct (Queue or Semaphore), and dedicate the task for this 
effort and let that task have constant priority.

  

 

Avoid APIs that facilitate indeterministic behavior

vTaskPrioritySet

Avoid Task Notifications

Avoid Queue Sets 

Revision #2 

Created 3 years ago by Preet Kang

Updated 3 days ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

