Queues

This article provides examples of using RTOS Queues.

Why RTOS Queues

There are standard queues, or <vector> in C++, but RTOS queues should almost always be used in your
application because they are thread-safe (no race conditions with multiple tasks), and they co-operate with
your RTOS to schedule the tasks. For instance, your task could optionally sleep while receiving data if the
gueue is empty, or it can sleep while sending the data if the queue is full.

Queues vs. Binary Semaphore for "Signal"

Binary Semaphores may be used to "signal" between two contexts (tasks or interrupts), but they do not contain
any payload. For example, for an application that captures a keystroke inside of an interrupt, it could "signal”
the data processing task to awake upon the semaphore, however, there is no payload associated with it to
identify what keystroke was input. With an RTOS queue, the data processing task can wake up on a payload
and process a particular keystroke.

The data-gathering tasks can simply send the key-press detected to the queue, and the processing task can
receive items from the queue, and perform the corresponding action. Moreover, if there are no items in the
gueue, the consumer task (the processing one) can sleep until data becomes available. You can see how this
scheme lends itself well to having multiple ISRs queue up data for a task (or multiple tasks) to handle.

Examples

Simple

After looking through the sample code below, you should then watch this video.

Let us study an example of two tasks communicating to each other over a queue.
QueueHandle t handle of int queue;

void producer(void *p) {

int x = 0;

while (1) {
vTaskDelay(100);

http://www.youtube.com/watch?v=8lIpI30Tj-g

++X;

if (xQueueSend(handle of int queue, &x, 0)) {

}
}
}
void consumer(void *p) {
while (1) {
// We do not need vTaskDelay() because this task will sleep for up to 100 ticks until there is an
if (xQueueReceive(handle of int queue, &x, 100)) {
printf("Received %i\n", Xx);
} else {
puts("Timeout --> No data received");
¥
}
}

void main(void) {
// Queue handle is not valid until you create it

handle of int queue = xQueueCreate(10, sizeof(int));

Queue usage with Interrupts

When an item is sent from within an interrupt (or received), the main difference in the API is that there is no
way to "sleep”. For example, we cannot sleep while waiting to write an item to the queue if the queue is full.
FreeRTOS API has dedicated API to be used from within ISRs, and other RTOSs simply state that you can use
the same API, but the sleep time has to be zero if you are inside of an interrupt.

With the FreeRTOS FromISR API, in place of the sleep time is a pointer to a variable that informs us if an
RTOS scheduling yield is required, and FreeRTOS asks us to yield in our application code.

static QueueHandle t uart rx queue;
// Queue API is special if you are inside an ISR
void uart rx _isr(void) {
BaseType t yield required = 0;
if (!'xQueueSendFromISR(uart rx queue, &x, &yield required)) {

// TODO: Queue was full, handle this case

portYIELD FROM ISR(yield required);
}
void queue rx_ task(void *p) {
int x = 0;
// Receive is the usual receive because we are not inside an ISR
while (1) {
if(xQueueReceive(uart rx queue, &x, portMAX DELAY)) {
}

}
void main(void) {

uart rx_queue = xQueueCreate(10, sizeof(char));}

Advanced Examples

Multiple Producers and Consumers

There are multiple ways to create multiple producers and consumers. The easiest way to do so at the expense
of a potentially excessive number of tasks is to have multiple tasks for each producer, and for each consumer.

static QueueHandle t light sensor queue;

static QueueHandle t temperature sensor queue;

void light sensor task(void *p) {

while (1) {

const int sensor value = rand(); // Some random value
if(xQueueSend(light sensor queue, &sensor value, portMAX DELAY)) {
}
vTaskDelay(1000);

}
void temperature sensor_ task(void *p) {
while (1) {
const int temperature value = rand(); // Some random value
if(xQueueSend(temperature sensor queue, &temperature value, portMAX DELAY)) {
}
vTaskDelay(1000);

}

void consumer of light sensor(void *p) {
int light sensor value = 0;
while(1) {
xQueueReceive(light sensor queue, &light sensor value, portMAX DELAY);

printf("Light sensor value: %i\n", light sensor value);

}

void consumer of temperature sensor(void *p) {
int temperature sensor value = 0;
while(1l) {
xQueueReceive(temperature sensor queue, &temperature sensor value, portMAX DELAY);

printf("Temperature sensor value: %i\n", temperature sensor value);

}
void main(void) {
light sensor_queue = xQueueCreate(3, sizeof(int));

temperature_sensor queue = xQueueCreate(3, sizeof(int));

xTaskCreate(light sensor task, ...);
xTaskCreate(temperature sensor task, ...);
xTaskCreate(consumer of light sensor, ...);
xTaskCreate(consumer of temperature sensor, ...);}

Multiple Producers, 1 Consumer

In order to create multiple producers sending different sensor values, we can "multiplex" the data values. The
producer would send a value, and also send an enumeration of what type of data it has sent. The consumer
would block on a single queue that all the producers are writing, and then it can use a switch/case statement to
handle data from multiple producers sending different kinds of values.

static QueueHandle t sensor queue;
typedef enum {
light,

temperature,

} sensor_type e;
typedef struct {
sensor_type e sensor_type;
int value;
} sensor value_ s;
void light sensor task(void *p) {
while (1) {
const sensor value s sensor value = {light, rand()}; // Some random value
if(xQueueSend(sensor queue, &sensor value, portMAX DELAY)) {

}
vTaskDelay(1000);

}

void temperature sensor task(void *p) {
while (1) {
const sensor value s sensor value = {temperature, rand()}; // Some random value
if(xQueueSend(sensor queue, &temperature value, portMAX DELAY)) {

}
vTaskDelay(1000);

}

void consumer of light sensor(void *p) {
sensor value s sensor;
while(1) {
xQueueReceive(sensor queue, &sensor, portMAX DELAY);

switch (sensor.sensor type) {

case light: printf("Light sensor value: %i\n", sensor.value);
break;
case temperature: printf("Temperature sensor value: %i\n", sensor.value);
break;
}
}

}
void main(void) {

sensor_queue = xQueueCreate(3, sizeof(sensor value s));

xTaskCreate(light sensor task, ...);

xTaskCreate(temperature sensor task, ...);

xTaskCreate(consumer of sensor values, ...);}

Multiple Producers, 1 Consumer using QueueSet API

Before you explore this API, be sure to read FreeRTOS documentation about "Alternatives to Using Queue
Sets". In general, this should be the "last resort”, and you should avoid the QueueSet API if possible due to its
complexity.

QueueSets is the most efficient way of blocking on multiple queues/semaphores. The semaphore task is one
of the producer tasks that give the semaphore at 1Hz, Queuel, and Queue2 handler in the light sensor and
temperature task which randomly generates the data of light and temperature sensor. The idea of using queue
sets in the consumer task is to wait on either the semaphore task or queues data.

static QueueHandle t g light sensor, q_temperature sensor;
static QueueSetHandle t xQueueSet;
static SemaphoreHandle t xSemaphore;
int generate random sensor values(int lower, int upper) {
int sensor value = (rand() % (upper - lower + 1)) + lower;
return sensor value;
}
// runing @1lHz
void semaphore task(void *p) {
while (1) {
vTaskDelay(1000);

xSemaphoreGive (xSemaphore) ;

}

// When u don't want to wait for queue/semaphore forever block on multiple queues
// Add data of light sensor to Queuel
void light sensor_ task(void *p) {
while (1) {
const int sensor value = generate random sensor values(10, 99);
xQueueSend(q light sensor, &sensor value, 0);

vTaskDelay(500) ;

https://freertos.org/Pend-on-multiple-rtos-objects.html

}
//Add data of Temperature Sensor to Queue2
void temperature sensor task(void *p) {
while (1) {
const int sensor value = generate random sensor values(25, 85);
xQueueSend(q_temperature sensor, &sensor value, 0);

vTaskDelay(500) ;

}
// Unblocks the task when any of the queues receives some data
void consumer(void *p) {
int count = 0;
int sensor value = 0;
while (1) {
//xQueueSelectFromSet returns the handle of the Queue, or Semaphore that unblocked us

QueueSetMemberHandle t xUnBlockedMember = xQueueSelectFromSet(xQueueSet, 2000);

if (xBlockedMember == q_light sensor) {
// Use zero timeout during xQueueReceive() because xQueueSelectFromSet() has
// already informed us that there is an event on this q light sensor
if (xQueueReceive(xUnBlockedMember, &sensor value, 0)) {
printf("Light sensor value: %i\n", sensor value);
}
} else if (xBlockedMember == q temperature sensor) {
if (xQueueReceive(xUnBlockedMember, &sensor value, 0)) {
printf("Temperature sensor value: %i\n", sensor value);
}
} else if (xUnBlockedMember == xSemaphore) {
// TODO: Do something at 1Hz, such as averaging sensor values

if (xSemaphoreTake(xUnBlockedMember, 0)) {

puts("1Hz signal");
}
} else {

puts("Invalid Case");

}
int main(void) {
srand(time(0));
// Create an empty semaphores and the queues to add the data of queues and semaphores to the queueSe
xSemaphore = xSemaphoreCreateBinary();
g_light sensor = xQueueCreate(10, sizeof(sensor value s));
q_temperature sensor = xQueueCreate(10, sizeof(sensor value s));
// Make sure before creating a queue set Queues and the semaphore we want to add to the queue sets a
// Length of the queue set is important -> Q1:10 | Q2:10 | Semaphore:1
xQueueSet = xQueueCreateSet((10 + 10 + 1) * sizeof(int));
// Associate the queues and the semaphore to the queue set
xQueueAddToSet (xSemaphore, xQueueSet);
xQueueAddToSet (q_light sensor, xQueueSet);
xQueueAddToSet (q temperature sensor, xQueueSet);
xTaskCreate(semaphore task, "semaphore task", 2048/(sizeof(void*)), NULL, 1, NULL);
xTaskCreate(light sensor task, "light", 2048, NULL, 1, NULL);
xTaskCreate(temperature sensor task, "temperature", 2048, NULL, 1, NULL);
xTaskCreate(consumer, "single consumer", 4096, NULL, 2, NULL);

vTaskStartScheduler();}

Additional Information

® Queue Management (Amazon Docs)
® Queue API (FreeRTOS Docs)

Revision #23
Created 4 years ago by Preet Kang
Updated 5 months ago by Preet Kang

https://docs.aws.amazon.com/freertos-kernel/latest/dg/queue-management.html
https://www.freertos.org/a00018.html
http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

