
CmpE240

Syllabus

Lab Assignments

Preparation for Labs

GPIO - LED and Switch Interface

Flash Accelerator Module

DMA - Memory to Memory transfer

Clock Configuration

Hardware Timer

DMA and Timer Integration

UART using GPIO

EEPROM Driver

Project - LapKart

SJSU - Advanced
Microcomputer
Design

Hardware implementation of a microcomputer architecture using modern microprocessors and related

integrated circuits: clock subsystem, bus drivers, map decoders, R/W memory, ROM, serial and parallel

I/O, DMA, interrupts.

Microcomputer architecture design describing the system bus, memory subsystems and peripherals.

Unidirectional and bidirectional system bus; SRAM, SDRAM and FLASH memories and their bus

interfaces; DMA, interrupt controller, transmitter/receiver, timers, display adapter, A/D and D/A

converters and other system peripherals and their interfaces with system bus.

Introduction to the SJ2 board, and development environment

Discuss class expectations

Introduction to SRAM and Flash memory

Mail out the boards

Setup slack for class collaboration

SJ2 project code structure

Schematic review

Bootloader, Reset and NMI (NXP Boot) pin

SJ2 board startup

LPC User Manual pdf brief review

Clock system

Discuss the role of a PLL

Syllabus
Course Description

Course Catalog Description

Planned classes

Class #1: Introduction

Class #2: Board Software Introduction

https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/tree/master/projects/lpc40xx_freertos#folder-structure
https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/tree/master/doc/LPC40xx/Schematic
http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/sj2-development-environment#bkmrk-unit-test-framework
https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/blob/master/LPC408X_7X User Manual.pdf

Peripheral clock divider

How printf really works

lpc40xx.h memory map review and LPC User manual review

Bit masking, LPC provided memory map

LED and switch interface

SJ2 unit-test framework

Introduction to the peripheral

Volatile keyword

Lab assignment: Setup memory-to-memory transfers

First 60 minutes: Review session and Timer Peripheral walkthrough

Review session, followed by the exam

Setup HW timer that rolls over each second

Lab assignment: Build an API to create a precise delay of nanoseconds

Lab assignment: Setup timer to trigger for the DMA

Transfer a block of memory to the GPIO memory

UART communication bus

Lab assignment: Use the timer API to delay by nanoseconds

SRAM layout

Flash layout

Class #3: Hands-on experiments

Class #4: DMA

Class #5: Midterm

Class #6: Timer

Class #7: DMA to GPIO

Class #8: UART driven by GPIO

Class #9: Memory

Startup and linker script

EEPROM

Lab assignment: Write a "peripheral driver"

Basics of an RTOS

Stack pointer

Lab assignment: Create multiple tasks

Final exam review

Final examination

Goodbyes

Class #10: Future facing knowledge: FreeRTOS

Last class

Lab Assignments

Lab Assignments

C programming basics

Functions

Structures

Pointers

Bit Masking Tutorial

Basic parts and toolkit

Look for any basic starter kit on amazon - mostly Breadboard, Jumper cables, LEDs,

Potentiometer, Buttons, Resistors

Something like this

In this part, the objective is simply to compile your project, and to make sure you can load the compiled

image onto your board.

Erase the contents of your existing main.c and use the code given below

Use the Google Chrome based serial terminal to confirm the output

Preparation for Labs

Part 0: Compile the sample project

// file: main.c

#include <stdio.h>

// Separate include files for Clang to sort separately

#include "delay.h"

void main(void) {

 unsigned counter = 0;

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/bitmasking
https://www.amazon.com/EL-CK-002-Electronic-Breadboard-Capacitor-Potentiometer/dp/B01ERP6WL4/ref=pd_sbs_147_2/132-6936347-2117569?_encoding=UTF8&pd_rd_i=B01ERP6WL4&pd_rd_r=6a783095-ec87-42ae-9f01-a5ebc9a44607&pd_rd_w=V2aU6&pd_rd_wg=11h1i&pf_rd_p=d66372fe-68a6-48a3-90ec-41d7f64212be&pf_rd_r=368WNKXFBBQY2FJQ4119&psc=1&refRID=368WNKXFBBQY2FJQ4119

The objectives of this part is:

Learn how to use existing API to blink LEDs

Get familiar with how to develop clean C APIs

Explore the code of the existing APIs to assess how it works

 while (1) {

 printf("Running: %u\n", counter);

 ++counter;

 delay__ms(1000U);

 }

}

Part 1: Get familiar with GPIO Blinky API

#include <stdio.h>

#include "board_io.h"

#include "delay.h"

#include "gpio.h"

/* This is just a sample

 * Cross-reference the schematic, and browse through the header files included above

 * to go above and beyond, and in general play with existing APIs

 */

int main(void) {

 gpio_s led0 = board_io__get_led0();

 while (1) {

 gpio__toggle(led0);

 delay__ms(500U);

 }

 return 0;

}

This exercise was mostly to get familiar with the board, and be excited about how your software can

control hardware. In the following weeks, you will be developing your own code by directly manipulating

the microcontroller's memory to achieve your objectives.

Conclusion

Lab Assignments

The objective of the assignment is to access microcontroller's port-pins to manipulate LEDs that are

connected to a few on-board LEDs of the SJ2 board.

Please reference this article for good hints related to this assignment.

In this part, we will setup basic skeleton of the code before we access the memory map to manipulate

an LED.

GPIO - LED and Switch

Interface
Objective

Part 0:

// file: main.c

#include <stdio.h>

// Separate include files for Clang to sort separately

#include "delay.h"

void main(void) {

 unsigned counter = 0;

 while (1) {

 printf("Running: %u\n", counter);

 ++counter;

 delay__ms(1000U);

 }

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/sj2-board
http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/gpio

In this part, we will actually reference the LPC user manual and manipulate one of the on-board LEDs.

You can refer Chapter 8 - Table 94 of the user manual.

}

Part 1:

// file: main.c

#include <stdio.h>

// Separate include files for Clang to sort separately

// Add header files required

#include "delay.h"

void blinky_leds(void){

	// 1. Refer to the datasheet and configure the direction and pin using the memory address

	uint32_t *port1_pin_register = (uint32_t *)(MEMORY_ADDRESS);

 ...

	// Set directions to the pins

	...

	while (1) {

		delay__ms(100);

		METHOD1: Use bitmasking techniques to set and reset the pins

		METHOD2: Use the set and clear registers

 }

}

int main(void)

{

	blinky_leds();

	return 0;

}

In this part, we will use the LPC memory map to manipulate the on-board LEDs. This will reduce us

from cross referencing the LPC user manual.

 Use LPC40xx MCU Memory Map as reference

Create a comprehensive GPIO driver and manipulate the on-board LED's using the on-board switches.

You could use PART1: GPIO Driver as reference.

Part 2:

// file: main.c

#include <stdio.h>

// Separate include files for Clang to sort separately

// Add header files required

#include "board_io.h"

#include "delay.h"

#include "gpio.h"

#include "lpc40xx.h"

void blinky_leds(void) {

	// Step 1: Choose pin as GPIO

	LPC_IOCON->(port_pin_number) &= ~7;

	// Step 2: Enable the direction pin

	while (1) {

		delay__ms(100);

		// Use set and clear registers to set and clear pins accordingly

	}

}

Part 3:

Extra Credit:

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/lpc40xx-mcu-memory-map
http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/lab-assignment-(in-c)-gpio

Do something creative with your implemented GPIO driver. You could have the LED blink three times

when the switch is pressed.

Want to have even more fun and experience multi-tasking functionality of your board's software

package? Then follow this link:

GPIO Assignment

Go above and beyond

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/lab-assignment-(in-c)-gpio

Lab Assignments

Chapter 4 of LPC40xx controller outlines the information about the flash accelerator module.

Typically in a microcontroller, there is either an internal or external flash memory that is interfaced over

a serial bus (SPI). This memory needs to be memory mapped to the processor and hence the intent of

the flash accelerator module is to provide an abstraction between the CPU and the serial memory.

1. Flash Accelerator Functionality

a. What is the main purpose of the flash accelerator in the LPC408x/407x microcontroller?

b. Describe how the flash accelerator improves CPU performance when accessing flash memory.

2. Flash Accelerator Blocks

a. Identify the main functional blocks of the flash accelerator.

b. What are the roles of the I-code and D-code buses in the context of the flash accelerator?

Flash Accelerator Module

Critical Thinking Questions

3. Prefetch Mechanism

a. Explain the difference between a "fetch" and a "prefetch" in the flash accelerator.

b. Why does the flash accelerator prioritize data access over instruction fetch?

4. Flash Programming Issues

a. Why can't the flash memory be accessed during programming or erase operations?

b. What steps must be taken to prevent a system failure during flash memory programming?

5. Flash Accelerator Configuration Register

a. What does the FLASHCFG register control in the flash accelerator?

b. How does changing the FLASHCFG register affect the flash accelerator’s operation?

6. CPU Stalls and Flash Access

a. What happens if a flash instruction fetch and a flash data access occur simultaneously?

b. Under what conditions would the CPU experience a stall during flash memory access?

Lab Assignments

Copy data from one memory block to another memory block using DMA controller

Use implemented driver to compare the performance between DMA copy and CPU copy

The first step is to familiarize yourself with the DMA peripheral. Read the LPC user manual multiple

times before you start the assignment.

DMA - Memory to Memory

transfer
Objective

Part 0: Read the DMA chapter

In this portion of the lab, you will implement GPDMA driver by choosing one of the DMA channels (0-7,

preferably 7) for performing memory-to-memory copy between 2 arrays. You will be modifying DMA

registers available in lpc40xx.h

Part 1: Basic DMA driver

#include <stdbool.h>

#include "lpc40xx.h"

#include "lpc_peripherals.h"

typedef enum {

 DMA__CHANNEL_0 = 0,

 DMA__CHANNEL_1,

 DMA__CHANNEL_2,

 DMA__CHANNEL_3,

 DMA__CHANNEL_4,

 DMA__CHANNEL_5,

 DMA__CHANNEL_6,

 DMA__CHANNEL_7,

} dma__channel_e;

LPC_GPDMACH_TypeDef *dma_channels[] = {LPC_GPDMACH0, LPC_GPDMACH1, LPC_GPDMACH2, LPC_GPDMACH3,

 LPC_GPDMACH4, LPC_GPDMACH5, LPC_GPDMACH6, LPC_GPDMACH7};

void dma__initialize(void) {

 // 1. Power on GPDMA peripheral; @see "lpc_peripherals.h"

 lpc_peripheral__turn_on_power_to(...); // Fill in the arguments

}

void dma__copy(dma__channel_e channel, const void *dest, void *source, uint32_t size_in_bytes);

 // 2. Enable GPDMA - Set the Enable bit in Config register

 // 3. Clear any pending interrupts on the channel to be used by writing to the IntTCClear

 // and IntErrClear register. The previous channel operation might have left interrupt active

 // 4. Write the source address into the CSrcAddr register.

 dma_channels[channel]->CSrcAddr = (uint32_t)source;

 // 5. Write the destination address into the DestAddr register.

 // 6. Write the control information into the Control register in one instruction

 // transfer size [11:0]

 // source burst size [13:12]

 // dest burst size [15:14]

 // source transfer width [20:18]

 // destination transfer width [23:21]

 // source address increment [26]

 // destination address increment [27]

 // TCI enable

 // Enable channel by setting enable bit for the channels CConfig register

 // IMPORTANT:

 // Poll for DMA completion here

}

bool check_memory_match(const void *src_addr, const void *dest_addr, size_t size) {

 // Write code to check the data of source and destination arrays

 // Hint: You may use memcmp()

}

Reuse code from Part 1. Reference the code below to measure the time taken for DMA copy,

programmatic copy and standard library function memcpy()

int main(void) {

 const uint32_t array_len = _____; //specify a length (< 2^12)

 // Be aware that you only have 64K of RAM where stack memory begins

 // You can make these 'static uint32_t' or make them global to not use stack memory

 uint32_t src_array[array_len];

 uint32_t dest_array[array_len];

 // Initialize the source array items to some random numbers

 // Choose a free DMA channel with the priority needed.

 // DMA channel 0 has the highest priority and

 // DMA channel 7 the lowest priority

 dma__initialize();

 dma__copy(...); // fill in the arguments

 const bool memory_matches = check_memory_match(...); // fill in the arguments

 while (true) {

 }

 return 1; // main() shall never return}

Part 2: Compare Performance of various methods

#include <string.h>

// Declare source and destination memory for the lab

static uint8_t memory_array_source[4096];

static uint8_t memory_array_destination[4096];

// Re-initialize the memory so they do not match

static void reset_memory(void) {

 for (size_t i = 0; i < sizeof(memory_array_source); i++) {

 memory_array_source[i] = i;

 memory_array_destination[i] = i + 1;

 }

}

// Copy memory using standard library memcpy()

static uint32_t memory_copy__memcpy(void) {

 const uint32_t start_time_us = sys_time__get_uptime_us();

 {

 memcpy(...); // TODO: Fill in the parameters

 }

 const uint32_t end_time_us = sys_time__get_uptime_us();

 return (end_time_us - start_time_us);

}

// Copy memory using the DMA

static uint32_t memory_copy__dma(void) {

 const uint32_t start_time_us = sys_time__get_uptime_us();

 {

 dma__copy(...); // TODO: Fill in the parameters

 }

 const uint32_t end_time_us = sys_time__get_uptime_us();

 return (end_time_us - start_time_us);

}

static uint32_t memory_copy__loop(void) {

 const uint32_t start_time_us = sys_time__get_uptime_us();

 {

 // TODO: Use a for loop

 }

 const uint32_t end_time_us = sys_time__get_uptime_us();

 return (end_time_us - start_time_us);

}

int main()

{

 dma__initialize(...);

 // Test 1:

 reset_memory();

 const uint32_t dma_us = memory_copy__dma();

Part 1 and Part 2 must be completed and fully functional.

You are encouraged to ask questions for any line of code that is not well understood (or magical).

Try changing source burst size and destination burst size bits to understand performance

improvements

Note the time taken in each case and turn in the screenshots

Should be able to make it work for any DMA channels(0-7) or array size

We may ask you to change the channel or array length and then recompile and re-flash your

board to and prove it works

Turn in the screenshots of terminal output for different burst size

 if (!check_memory_match(memory_array_source, memory_array_destination, sizeof(memory_array_source)) {

 puts("ERROR: Memory copy did not work");

 }

 // TODO: Reset memory, then perform memory copy, and check if memory matches

 // Test 2:

 const uint32_t loop_us = memory_copy__loop();

 // Test 3:

 const uint32_t memcpy_us = memory_copy__memcpy();

 printf("DMA copy completed in: %lu microsec\n", dma_us);

 printf("For loop completed in: %lu microsec\n", loop_us);

 printf("memcpy completed in : %lu microsec\n", memcpy_us);

 while (true) {

 }

 return 1; // main() shall never return}

Requirements

What to turn in:

Extra Credit - Make program to choose DMA channels using onboard buttons and run

DMA copy process

?

Lab Assignments

One of the first aspects of a startup process is CPU clock configuration. Usually, a microcontroller

would have an internal "RC" oscillator, which is referenced in the diagram below as an IRC. This

internal oscillator allows the CPU to boot before the application code can switch to another clock source

if desired.

Clock Configuration

Exercise

Note that because you will be altering the clock source, your UART driver which is used to output

printf() data may not work.

1. OSC clock

1. Verify if you have an external oscillator installed on your board
2. Switch the CLCKSEL[8] to switch to SYSCLK
3. Modify CLKSRCSEL[0] to switch to OSC clock
4. Validate that you are able to execute code by blinking an LED

2. Revert your changes from the previous part to complete this part

1. Divide the Peripheral clock 2 using PCLKSEL[4:0]
2. Use 38400 in webserial application and check what is output when you hit RESET on your

board
3. Slow down the webserial communication rate by 2 (ie: 19200 vs. 38400)

1. Validate that you are able to see the printf() output
2. Explain your observations

3. Try setting the CCLKSEL[4:0] to 0

1. Is your LED still blinking?
2. Explain your results

Lab Assignments

A hardware timer is a time tracking peripheral that runs independent of the foreground CPU

instructions. For example, you can start to count the clock cycles using a hardware timer independent of

the instructions the CPU is processing. Fundamentally, a hardware timer is a CPU peripheral, but you

can consider "CPU peripheral" as an independent CPU, or co-processor.

Objective of this part is to fully understand the clock system, and the registers of the Timer Peripheral.

First thing to recognize is that all peripherals are configured to receive the PLL clock. As a reminder,

12MHz clock on the SJ2 (NXP chip) is multiplied to 96MHz , and this clock is then sourced to the

hardware timer peripheral. What this means is that you can digitally count the number of clock cycles of

the CPU which is 96Mhz , and each timer register ticking up (or incrementing) is at the rate of about

10.4ns .

Hardware Timer

Part 0: Fundamentals

The LPC User manual chapter of interest is:

The register of relevance:

PC

This register will count the input clock which is the PCLK (peripheral clock)

When it equals to the value of (PR + 1) then it resets back down to zero, and increment TC by 1

PR

This register provides means to divide the clock, and increment the TC register slower than the

input clock of 96Mhz. So for example, if (PR == 95) , then input clock of 96Mhz will increment

the PC register, and when that equals to 95, the TC will increment by 1. So in this example, we

will configure such that TC register will increment at 1Mhz rather than 96MHz

Match Registers

When TC matches one of the four registers, you can generate events such as resetting the timer

Capture Registers

These allow you to capture events such as an external GPIO (switch or a sensor) giving data by

means of signal pulses. The capture registers can capture the time when a GPIO goes low, or it

goes high, and in the end you can use this peripheral to read pulse width modulation signals

In this part, we will configure the Timer peripheral to make sure that it is incrementing as expected.

There are four HW timers on the NXP LPC40xx. We will use the Timer-3 peripheral for this assignment;

Part 1: Bring up the Timer

we could theoretically use any HW timer peripheral, but the Timer-0 is already utilized by the sample

project specifically to support the delay APIs, and to get system uptime.

#include "lpc40xx.h"

#include "lpc_peripherals.h"

void hw_timer3__initialize(void) {

 // 1. Power on TIMER peripheral as per the timer_num argument; @see "lpc_peripherals.h"

 lpc_peripheral__turn_on_power_to(...); // Fill in the arguments

}

void hw_timer3__enable_timer(void) {

 // 2. Configure the PR register

 // 3. Configure the PC register

 // 4. Configure the TCR register

}

uint32_t hw_timer3__get_timer_counter(void) {

 // Return the TC register value

}

int main(void) {

 hw_timer3__initialize(....); // fill in the arguments

 hw_timer3__enable_timer();

 printf("Timer3 MR0 value: %u\n", LPC_TIM3->MR0);

 // TODO: Print other registers:

 // TCR

 // PR

 // PC

 while (true) {

 	 delay__ms(1000);

 printf("TC value: %u\n",hw_timer3__get_timer_counter());

 }

 }

 return 1; // main() shall never return}

In this part, we will build an API to delay the CPU execution with precision of within a few tens of

nanoseconds.

Reuse code in Part 1 and create a new api called delay__ns(uint32_t nanos) . Note that in the sample

code below, we use an API (delay__us) to estimate that our nanosecond delay API is roughly correct.

The delay__us API is not very precise and may easily be inaccurate by 1-2uS.

Part 2: Delay API

#include "lpc40xx.h"

#include "lpc_peripherals.h"

void delay__ns(uint32_t nanos) {

 // Use TC as reference and keep looping inside this function until delay is done

}

void hw_timer3__enable_timer(void) {

 // From Part 1

}

int main(void) {

 const uint32_t nanos = ________; //fill in the nanoseconds (Ex. 500)

 // Initialize

 hw_timer3__initialize(...);

 hw_timer3__enable_timer();

 uint32_t start_time_us = 0;

 uint32_t end_time_us = 0;

 while (true) {

 start_time_us = sys_time__get_uptime_us();

 delay__ns(nanos);

 end_time_us = sys_time__get_uptime_us();

 printf("Diff in microsecs: %u\n", (end_time_us - start_time_us));

 delay__ms(1000);

 }

In this part, we will apply a software instruction cycle compensation to the delay function you built.

You will inspect the generated *.lst file (in your build directory)

Assuming average of 2 clock cycles per instruction, you will compensate for this for the delay

If the delay API is called with fewer nanoseconds than minimum, you can exit the function

immediately

Note that in case you cannot find your function in the lst file, please try using GCC "no inline"

attribute.

void delay_ns() __attribute__ ((noinline));

Part 1 and Part 2 must be completed and fully functional.

You are encouraged to ask questions on any of the register settings

The delay function you build must compensate for software delay (Part 3)

 }

 return 1; // main() shall never return}

Part 3: Make Delay API precise

void delay__ns(uint32_t nanos) {

 const uint32_t function_invocation_approximate_cycles = 10; // You determine the number

 // At 96MHz, it is approximately 10ns per clock cycle

 const uint32_t function_invocation_approximate_nanos = 10 * function_invocation_approximate_cycles;

 // Compensate...

 if (nanos > function_invocation_approximate_nanos) {

 nanos -= function_invocation_approximate_nanos;

 }}

Requirements

Change seconds/nanos values and check the output prints

Turn in the print screenshots

Code snippets

Turn in the screenshots of terminal output for different seconds/nanoseconds values

You can use the PC and the TC registers to form a 64-bit counter

The only trick is that you will have to read them in a way to make sure that you do not read one

register value while the other one has overflows

See reference code below for hints

What to turn in:

Extra credit: Going above and beyond:

uint64_t sys_time__get_uptime_us(void) {

 uint32_t before = 0;

 uint32_t after = 0;

 uint32_t tc = 0;

 /**

 * Loop until we can safely read both the rollover value and the timer value.

 * When the timer rolls over, the TC value will start from zero, and the 'after' value will be less than the 'before'

 * value in which case, we will loop again and pick up the new rollover count.

 */

 do {

 before = LPC_TIM3->PC;

 tc = LPC_TIM3->TC;

 after = LPC_TIM3->PC;

 } while (before < after);

 uint64_t bit64 = ((uint64_t)after << 32) | tc;}

Lab Assignments

In this assignment, we will use multiple CPU peripherals and allow them to talk to each other per the

design of the NXP chip. This means that you can only "program" the hardware to do what it is capable

of, and we cannot arbitrarily have peripherals talk to each other unless NXP chip provides such

capability.

Let us first understand the overall block diagram of various different components we will be

programming. The objectives to understand are:

HW Timer will generate a "trigger" signal for the DMA

We will use a "Match" register to generate the trigger signal

DMA channel will be pre-configured to transfer a value from RAM to the GPIO peripheral

The channel CONFIG register bits, particularly the DESTPERIPHERAL chooses which channel will

receive what trigger request

DMA and Timer Integration

Part 0: Fundamentals

In this part, we will configure the DMA and test it independently of the HW timer to ensure that it is

able to write to our GPIO register correctly. The objective is to program the DMA to turn on or turn off an

LED, and we will trigger the DMA manually in software (rather than having the HW timer do that).

We will need to:

1.
Choose a persistent (global) RAM variable as source of data (static variable)

This is the value we want to write to either the GPIO SET or CLR register. For example, if you

are to set or clear led number 13, then you will set the variable's value to (1 << 13)

Note that the LEDs are active LOW, so if the LED is lit by default (before the main() function),

then you would set DMA destination address to write to the GPIO SET register

2. Set DMA source as Memory (RAM)
3. Set DMA destination as Peripheral (GPIO)

For this part it may not matter, but once the HW timer is used as a trigger, then you have to set

the destination as a peripheral type

4. Set source size as one non-incrementing byte address
5. Set destination size as non-incrementing byte address

Part 1: Program DMA to write GPIO

6. Transfer type would be memory-to-memory because the destination is set to address of GPIO

memory register

By the end of this portion of the lab, you should prove yourself that you can use the DMA to write the

GPIO peripheral to turn off an LED. The register settings may be a bit confusing, so here is a note from

a previous student:

When setting the Destination peripheral note that you are not setting the location where the

transfer is going to but you are setting the source of the DMA request and in the case where the

source is the timer match then you will need to set a the transfer type as a memory to memory.

?

#include <stdbool.h>

#include "lpc40xx.h"

#include "lpc_peripherals.h"

// All DMA related functions and global variables to be re-used from previous DMA lab

void dma__setup_ram_to_peripheral() {

 // Reuse code from previous lab dma__copy() function for register configuration

 // In CControl register, do not increment the destination address

 .

 .

 .

 // In CConfig register

 // Set TIMER3 MR0 as DESTPERIPHERAL

 // Set Memory-to-peripheral as TRANSFER TYPE

 // Example: We wish to turn on P1.26

 // We are trying to do this: 'LPC_GPIO1->CLR = (1 << 10)'

 // Use 'static' such that source memory never goes out of scope

 static const uint32_t value_from_ram_you_want_to_write = (1 << 26);

 [CH2]->SRC = (uint32_t) &value_from_ram_you_want_to_write;

 [CH2]->DST = &(LPC_GPIO1->CLR);

}

int main(void) {

 LPC_SC->DMAREQSEL = __________; // Set Timer3 Match Compare 0 as DMA request signal

 // DMA initialization to initialize common GPDMA registers

 dma__initialize();

In this part, we will enable the HW timer to automatically kick the DMA to do the transfer of data from

memory to the GPIO peripheral. Since the DMA is already configured to transfer a fixed byte from our

RAM to the GPIO peripheral, the only thing to really figure out is how to have the HW timer kick a

specific DMA channel.

General steps:

1. HW timer (TC register) starts at value of zero
2. HW timer is pre-programmed to kick the DMA upon a "match"

Which means that we need to choose our desired value of the "match register"

3. DMA should be programmed to receive DMA start request from your HW timer

You can consider a few approaches:

HW Timer match can stop the TC when it occurs (and it will still generate DMA trigger signal)

HW Timer match can reset TC back to zero to make it a periodic DMA request

By the end of this portion of the lab, you should ensure that your timer is working, and upon the match

register value match, that it does what you designed the timer to do (such as reset the TC, and

generate DMA)

 // Use SET register to turn off LED P1.26

 // Startup code should have enabled the LED, so you will disable (turn it off)

 dma__setup_ram_to_peripheral();

 while (true) {

 }

 return 1; // main() shall never return}

Part 2: Configure HW Timer to trigger DMA

// Reuse the TIMER3 code from previous lab

In this part, we will ensure that after you prove that the Timer can kick pre-programmed DMA channel,

there should be a graceful terminal condition such that the transfer does not happen again unless

requested by you as a programmer. The objective is to bring it all together, and use Part 0 - Part 2 to

turn off an LED by using the timer and the DMA.

To earn bonus points, create an application that will:

Setup two channels of DMA

Match 0 triggers DMA Channel 0

March 1 triggers DMA Channel 1

Setup HW timer to trigger CH0 every odd second (1, 3, 5, etc.)

Use "Match 0"

Setup HW timer to trigger CH1 every even second (2, 4, 6, etc.)

Use "Match 1"

Create an application that will blink an LED at 1Hz without writing the GPIO peripheral

Source code submitted to Canvas

Any accompanying screenshots or videos

// Set MR0 register to peripheral clock frequency

// Set PR register to 95, such that each TC increments every 1uS (good for easy calculations)

void setup_timer3_match0_dma_trigger(void) {

 // TODO: complete this

}

Part 3: Integration

Part 4: Blinky LED

Requirements

Lab Assignments

The objective of this assignment is to emulate UART in software. You will use a GPIO pin to transmit

data to another UART receiver.

Here is another bookstack page to reference:

http://books.socialledge.com/books/sjsu---embedded-drivers-rtos/page/uart

In this part, you will understand the fundamentals of what you are trying to accomplish in this

assignment. We will disconnect the UART peripheral that transmits data, and take control of the pin

using the GPIO peripheral.

Each I/O pin can be selected for a specific function. By default in the SJ2 software code, the P0.2 is

selected for UART transmission. We will disconnect this from the UART peripheral, and take control of

this pin using the GPIO peripheral.

Sample code below; please inspect the function calls to figure out what register it may be writing, and

correlate this with the LPC user manual. For example, confirm that gpio__construct_as_output() is

writing to the DIR register.

UART using GPIO

Part 0: Fundamentals

http://books.socialledge.com/books/sjsu---embedded-drivers-rtos/page/uart

In this part, you will design your software based UART in your main function and transmit a string to

your computer. You will use the HW timer delay you build in one of the previous labs.

Note that since you took over the P0.2 pin in Part 0, you can control this pin using the GPIO

peripheral. UART idles high on startup, so you should design such that the pin is left with logic high

when idle. So far, your skeleton of the code should resemble something like the following code snippet

below. The one thing you lose is that because we have taken over P0.2 (UART peripheral is no longer

controlling this pin), we can no longer printf() or output any data to the serial console anymore, but

this is only temporary until the next Part 2.

At the end of this Part, you should be able to convince yourself that you are able to fully emulate the

UART using the GPIO. Instead of peripheral doing the work for you, you are using your CPU to do the

work, so of course things are not as efficient as they can be.

What we will try to do is send out data by directly controlling the P0.2 . You may have built your HW

timer function which has accuracy of maybe a few tens, or even a couple of hundred nanoseconds.

UART can compensate for about 3% error, so what this means is that if you are sending data at

9600bps, the other receiver may be able to read your data even if it is running 9870bps.

#include "gpio.h"

const uint32_t pin2 = 2;

// See board_io.c for reference

static void disconnect_uart_peripheral(void)

 gpio__construct_with_function(GPIO__PORT_0, pin2, GPIO__FUNCTION_0); // P0.2 - Uart-0 Tx

 // Construct P0.2 as an output pin and set to logic HIGH to "IDLE" level of the UART signal

 gpio__construct_as_output(GPIO__PORT_0, pin2);

 LPC_GPIO0->SET = (1 << pin2); // Set P0.2 as HIGH (3.3 logic "1")}

Part 1: UART in main()

http://books.socialledge.com/books/cmpe240---advanced-microcomputer-design/page/dma-and-timer-integration

static const uint32_t pin2 = (1U << 2);

// Make this function static to make it 'private' to this file only

static void disconnect_uart_peripheral(void)

 gpio__construct_with_function(GPIO__PORT_0, 2, GPIO__FUNCTION_0); // P0.2 - Uart-0 Tx

 gpio__construct_as_output(GPIO__PORT_0, 2);

 LPC_GPIO0->SET = pin2;

}

// Make this function non static on purpose

// static

void gpio_uart_send_byte(char byte) {

 // Set LOW for the start bit

 LPC_GPIO0->CLR = pin2; your_hw_delay_ns(baud_rate_delay_ns);

 // TODO:

 // Send 1 bit at a time of the 'byte' with LSB first

 // Use a for loop or similar to send all 8 bits using the P0.2 GPIO

 // Set HIGH for the stop bit

 LPC_GPIO0->SET = pin2; your_hw_delay_ns(baud_rate_delay_ns);

}

int main(void) {

 disconnect_uart_peripheral();

 while (1) {

 gpio_uart_send_byte('G');

In this part, you will replace the underlining function that uses hardware based UART peripheral with

your software based UART function.

Please note the following:

printf() is invoked before the main() function starts to run

If you have any dependency on your HW timer initialization before your main() , then you may have

to perform a workaround

The _write() function is meant to send multiple bytes according to

const char *ptr, int bytes_to_write)

The key is to alter system_calls.c file and re-direct its output to our UART function. Check the

following for reference.

 gpio_uart_send_byte('O');

 delay_ms(1000);

 }

 return 0;}

Part 2: Connect printf() to UART

// file: system_calls.c

// Declare your GPIO based UART output function here so we can invoke it

// The compiler's linker will "find" this function even without an inclusion of a header file

void gpio_uart_send_byte(char byte);

int _write(int file_descriptor, const char *ptr, int bytes_to_write) {

 if (_isatty(file_descriptor)) {

 // ...

 if (rtos_is_running && transmit_queue_enabled && !is_standard_error) {

 //Instead of calling this function, call your GPIO UART based function

 //system_calls__queued_put(ptr, bytes_to_write); // replace with gpio_uart_send_byte()

 } else {

Of course, after altering the file, test it out by now using printf() in your main() function.

To go above and beyond, you can use a timer interrupt to latch one bit at a time and minimize your

CPU consumption. The psuedo-algorithm is as follows:

 //system_calls__polled_put(ptr, bytes_to_write); // replace with gpio_uart_send_byte()

 }

 } else {

 system_calls__print_and_halt("ERROR: Call to _write() with an unsupported handle");

 }

 return bytes_to_write;}

Extra Credit

char byte_to_transmit;

size_t bit_number;

void transmit_byte(char byte) {

 while (timer_is_running) {

 ; // Wait for previous transmission to complete

 }

 bit_number = 0;

 byte_to_transmit = byte;

 // Initialize HW timer

 // 1. Set Match register interrupt for 104uS (assuming 9600bps)

 // 2. Enable timer

}

// System interrupt will invoke this function every 104uS

void timer_match_interrupt(void) {

 switch (bit_number) {

 case 0: CLR = ?; break; // start bit

 case 1 ... 8: GPIO = byte_to_transmit & 0x01; byte_to_transmit >>= 1;

For this portion of the assignment, you should use hw_timer.h which has existing API to enable timer

and an interrupt callback.

 break;

 case 9: // stop bit

 GPIO = 1; // SET Register

 // TODO: Disable timer

 break;

 }

 bit_number++;}

// Reference hw_timer.h

// Reference how sys_timer.c generates match interrupt

// Inside the interrupt, you also have to acknowledge and clear interrupt

/**

 * Enables and starts the timer

 * @param prescalar_divider This divider is applied to the clock source into the timer

 * This is offset by 1, so 0 means divide by 1, and 1 means divide by 2

 *

 * @param isr_callback The ISR callback for the timer, including all Match-Register interrupts

 * @note The isr_callback may be NULL if the timer will not be configured for any match interrupts

 */

void hw_timer__enable(lpc_timer_e timer, const uint32_t prescalar_divider, function__void_f isr_callback);

Lab Assignments

In this assignment, we will build up a driver to write the EEPROM on the NXP processor.

EEPROM Driver

EEPROM is a non-volatile memory mainly used for storing relatively small amounts

of data, for example for application settings. The EEPROM is indirectly accessed

through address and data registers, so the CPU cannot execute code from

EEPROM memory

“

Part 0: EEPROM Chapter

Part 1: Driver Skeleton

To simplify the driver interface, we will deal with "pages" and read and write the entire page at a time

rather than reading or writing singular bytes.

#include "lpc40xx.h"

typedef struct {

 uint8_t bytes[64];

} eeprom_page_s;

void eeprom__initialize(void) {

 // Configure PWRDWN, CLKDIV, WSTATE registers as per datasheet instructions

}

uint8_t eeprom__read_page(eeprom_page_s *page, uint8_t page_number) {

 //1) Read data from RDATA register

 //2) Wait for read to finish

}

uint8_t eeprom__write_page(const eeprom_page_s *page, uint8_t page_number) {

 //1) Write byte_data to WDATA register

 //2) Issue another CMD to erase/program and wait for process to finish

}

int main(void)

{

 // For 4K EEPROM - 64 pages limit and each page can hold 64 bytes of data

 // TODO: Setup your test harness, such as:

 // Write a page of known data

 // Read a page

 // Compare the pages together

 while(1)

 {

 }

 return 0;}

Part 2: Implementation with page data read/write

 Reuse the above code and implement writing/reading stream of data with page offset

void eeprom__read_data(uint32_t page_num, uint32_t page_offset, void *buff, size_t bytes_to_read) {

 LPC_EEPROM->ADDR = (page_num << 6) | page_offset;

 //Configure READ operation

 uint32_t index = 0;

 for(....) {

 //copy data to buffer

 }

}

void eeprom__write_data(uint32_t page_num, uint32_t page_offset, void *buff, size_t bytes_to_write) {

 //a) Set ADDR with page address. Refer API above

 //b) Configure WRITE operation

 uint32_t index = 0;

 for(....) {

 //copy buffer to WDATA register

 }

}

int main(void) {

 //For 4K EEPROM - 64 pages limit and each page can hold 64 bytes of data

 //1) Create a char buffer with your name

 const char name[] = "_________"; //fill in

 uint32_t name_len = ____________; //fill in

 //2) Initialize EEPROM

 //3) Copy name buffer to EEPROM page 5 offset 10 and program/flush data to EEPROM

 //4) Verify the data on page 5 by reading into a buffer and print

 while(1)

 {

To earn bonus points, enhance the READ/WRITE APIs that will:

Use Interrupt status during read/write/Program/Erase operation

Make reads/writes to take in 8-bit/16-bit/32-bit configuration as argument

Source code and terminal output screenshots submitted to Canvas

 }

 return 0;}

Part 3: Extra Credit

Requirements

The objective of the project is to design a lap timer consisting of:

Raspberry Pi to run the software

LED matrix display

1. Display shall be readable from 10 feet away
2. Display should be bright enough to be read on a sunny day

Please consider using 128x64 or another large size display:

https://www.adafruit.com/product/2278.

https://www.sparkfun.com/products/14646Links to an external site.

There shall be two distance sensors such that we can detect a vehicle passing by in one direction.

1. Sensor logic shall be able to detect a vehicle moving north, versus a vehicle moving south in the

other direction

Vehicle moving south should not trigger a lap. This can happen when a driver has finished their

laps and they are coming back around to park the vehicle

2. When Sensor 1 triggers, immediately followed by Sensor 2 trigger, that shall indicate a driver

passing by

Timing of the sensor shall be taken into account such that bystanders walking by the project will

not trigger a driver passing by

In a nutshell, your sensor logic should ideally sense only when a driver is passing forwards, and filter

Project - LapKart

Requirements

LED Matrix

Sensor

https://www.adafruit.com/product/2278
https://www.adafruit.com/product/2278
https://www.sparkfun.com/products/14646
https://www.sparkfun.com/products/14646

out everything else. You can assume that a sensor is triggered when someone is within 10 feet of the

sensor.

A good way to interface with the user is through voice commands. This way, we would not need to build

custom button-menu or use the keyboard. For example, a user can hold a button and speak a

command.

You must support the following commands:

1. Reset (should not restart Raspberry Pi, and instead should restart your logic loop)

A good way might be to kill the application and have systemd restart it

2. Set maximum laps: #
3. Set maximum drivers: #

Set driver 1 name: Preet

Set driver 2 name: John

4. The settings above must persist across power cycles

Save the configuration to a file, and load configuration upon startup of your software

1. There shall be a single power cable entering the project package

You could have a 12v input that is then converted to 5v and other voltage levels internally

You could also have an AC wire plugged in, and internally you can use 12v transformer or other

power conversion hardware

2. Package should be sturdy enough to not fall apart easily ;)

Ensure that your hardware is secured properly

3. The Raspberry Pi hostname should be listed on your package

In case I wish to edit your code, I should be able to ssh into Raspberry Pi to alter any logic

There should be a README file at the root indicating where your source code is located

User Interface

Packaging

