Hardware Timer

A hardware timer is a time tracking peripheral that runs independent of the foreground CPU instructions. For
example, you can start to count the clock cycles using a hardware timer independent of the instructions the
CPU is processing. Fundamentally, a hardware timer is a CPU peripheral, but you can consider "CPU
peripheral" as an independent CPU, or co-processor.

Part 0: Fundamentals

Objective of this part is to fully understand the clock system, and the registers of the Timer Peripheral.

First thing to recognize is that all peripherals are configured to receive the PLL clock. As a reminder, 12MHz

clock on the SJ2 (NXP chip) is multiplied to 96MHz , and this clock is then sourced to the hardware timer
peripheral. What this means is that you can digitally count the number of clock cycles of the CPU which is

96Mhz , and each timer register ticking up (or incrementing) is at the rate of about 10.4ns .

CPU

Peripheral [R
Clock B o DMA
Divider |
i)
SJ2 Startup code o ; TIMER-0
enables PLL and D'V'fie by: 96 MHz
outputs 96Mhz 5 ——
clock
4
8
TIMER-3

The LPC User manual chapter of interest is:

UM10562

Chapter 24: LPC408x/407x Timer0/1/2/3
Rev. 3 — 12 March 2014 User manual

The register of relevance:

e PC
o This register will count the input clock which is the PCLK (peripheral clock)
o When it equals to the value of (PR + 1) then it resets back down to zero, and increment TC by 1
e PR
o This register provides means to divide the clock, and increment the TC register slower than the input

clock of 96Mhz. So for example, if (PR == 95) , then input clock of 96Mhz will increment the PC
register, and when that equals to 95, the TC will increment by 1. So in this example, we will configure
such that TC register will increment at 1Mhz rather than 96MHz
e Match Registers
o When TC matches one of the four registers, you can generate events such as resetting the timer
e Capture Registers
o These allow you to capture events such as an external GPIO (switch or a sensor) giving data by means
of signal pulses. The capture registers can capture the time when a GPIO goes low, or it goes high, and
in the end you can use this peripheral to read pulse width modulation signals

0x4009 0000 (TIMER2), 0x4009 4000 (TIMER3))

Name Access Address Description Reset
offset valuelll

IR R/W 0x000 Interrupt Register. The IR can be written to clear interrupts. The IR 0
can be read to identify which of eight possible interrupt sources are
pending.

TCR RAW 0x004 Timer Control Register. The TCR is used to control the Timer 0
Counter functions. The Timer Counter can be disabled or reset
through the TCR.

TC RW 0x008 Timer Counter. The 32 bit TC is incremented every PR+1 cycles of 0
PCLK. The TC is controlled through the TCR.

PR RAW 0x00C Prescale Register. When the Prescale Counter (PC)is equal to this]
value, the next clock increments the TC and clears the PC.

PC RW 0x010 Prescale Counter. The 32 bit PC is a counter which is incremented 0
to the value stored in PR. When the value in PR is reached, the TC
is incremented and the PC is cleared. The PC is observable and
controllable through the bus interface,

MCR RAW 0x014 Match Control Register. The MCR is used to control if an interrupt 0
is generated and if the TC is reset when a Match occurs.

MRO R/W 0x018 Match Register 0. MRO can be enabled through the MCR to reset 0
the TC, stop both the TC and PC, and/or generate an interrupt
every time MR0O matches the TC.

MRA1 R/W 0x01C Match Register 1. See MRO clescription_ 0

MR2 R/W 0x020 Match Register 2. See MRO description. 0

MR3 RAW 0x024 Match Register 3. See MRO description. 0

CCR RW 0x028 Capture Control Register. The CCR controls which edges of the 0
capture inputs are used to load the Capture Registers and whether
or not an interrupt is generated when a capture takes place.

CRO RO 0x02C Capture Register 0. CRO is loaded with the value of TC when there]
is an event on the CAPN.0 input.

CR1 RO 0x030 Capture Register 1. See CRO description. 0

EMR R/W 0x03C External Match Register. The EMR controls the external match 0
pins.

CTCR RW 0x070 Count Control Register. The CTCR selects between Timer and 0

Counter mode, and in Counter mode selects the signal and
edge(s) for counting.

Part 1: Bring up the Timer

In this part, we will configure the Timer peripheral to make sure that it is incrementing as expected.

Section

Table 540

Table 541

Table 542

Table 543

Table 544

Table 545

Table 546

Table 546
Table 546
Table 546

Table 547

Table 548

Table 548

Table 549

Table 550

There are four HW timers on the NXP LPC40xx. We will use the Timer-3 peripheral for this assignment; we
could theoretically use any HW timer peripheral, but the Timer-0 is already utilized by the sample project
specifically to support the delay APIs, and to get system uptime.

#include "1pc40xx.h"

#include "1lpc _peripherals.h"

void hw timer3 initialize(void) {
// 1. Power on TIMER peripheral as per the timer num argument; @see "lpc peripherals.h"
lpc_peripheral turn on power to(...); // Fill in the arguments

}

void hw_timer3 enable timer(void) {

// 2. Configure the PR register

// 3. Configure the PC register
// 4. Configure the TCR register
}
uint32 t hw timer3 get timer counter(void) {
// Return the TC register value
}
int main(void) {
hw timer3 initialize(....); // fill in the arguments
hw timer3 enable timer();
printf("Timer3 MRO value: %u\n", LPC TIM3->MRO);
// TODO: Print other registers:
// TCR
// PR
// PC

while (true) {
0 delay ms(1000);

printf("TC value: %u\n",hw timer3 get timer counter());

}

return 1; // main() shall never return}

Part 2: Delay API

In this part, we will build an API to delay the CPU execution with precision of within a few tens of nanoseconds.

Reuse code in Part 1 and create a new api called delay ns(uint32 t nanos) . Note that in the sample code
below, we use an API (delay us) to estimate that our nanosecond delay API is roughly correct. The
delay us APl is not very precise and may easily be inaccurate by 1-2usS.

#include "1pc40xx.h"
#include "lpc peripherals.h"
void delay ns(uint32_ t nanos) {

// Use TC as reference and keep looping inside this function until delay is done

}

void hw timer3 enable timer(void) {
// From Part 1

}

int main(void) {

const uint32 t nanos = ; //fill in the nanoseconds (Ex. 500)

// Initialize
hw timer3 initialize(...);

hw timer3 enable timer();

uint32 t start time us = 0;

uint32 t end time us = 0;

while (true) {
start time us = sys time get uptime us();
delay_ns(nanos);

end time us = sys time get uptime us();

printf("Diff in microsecs: %u\n", (end time us - start time us));

delay ms(1000);

}

return 1; // main() shall never return}

Part 3: Make Delay API precise

In this part, we will apply a software instruction cycle compensation to the delay function you built.

You will inspect the generated *.1st file (in your build directory)
Assuming average of 2 clock cycles per instruction, you will compensate for this for the delay
If the delay API is called with fewer nanoseconds than minimum, you can exit the function immediately

Note that in case you cannot find your function in the Ist file, please try using GCC "no inline" attribute.
o

void delay ns() attribute ((noinline));

void delay ns(uint32 t nanos) {

const uint32 t function invocation approximate cycles = 10; // You determine the number

// At 96MHz, it is approximately 10ns per clock cycle

const uint32 t function invocation approximate nanos = 10 * function invocation approximate cycles;

// Compensate. ..
if (nanos > function invocation approximate nanos) {
nanos -= function invocation approximate nanos;

1}

Requirements

® Part 1 and Part 2 must be completed and fully functional.
o You are encouraged to ask questions on any of the register settings

® The delay function you build must compensate for software delay (Part 3)
e Change seconds/nanos values and check the output prints
o Turn in the print screenshots

What to turn in:

e Code snippets
e Turn in the screenshots of terminal output for different seconds/nanoseconds values

Extra credit: Going above and beyond:

e You can use the PC and the TC registers to form a 64-bit counter

o The only trick is that you will have to read them in a way to make sure that you do not read one register
value while the other one has overflows
o See reference code below for hints

uint64 t sys time get uptime us(void) {

uint32_t before = 0;

uint32_t after = 0;

uint32 t tc = 0;

Vit

* Loop until we can safely read both the rollover value and the timer value.
* When the timer rolls over, the TC value will start from zero, and the 'after' value will be less
* value in which case, we will loop again and pick up the new rollover count.
*/

do {
before = LPC TIM3->PC;
tc = LPC_TIM3->TC;
after = LPC_TIM3->PC;

} while (before < after);

uint64 t bit64 = ((uint64 t)after << 32) | tc;}

Revision #31
Created 4 years ago by sree harsha
Updated 4 years ago by Preet Kang

http://books.socialledge.com/user/4
http://books.socialledge.com/user/8

