
Learning Objectives

Reference Material

Tools

Books and Online Resources

Basics

Number Systems

Python Number Converter

Storage Units

Gates

Programming Languages

How program is compiled in C

Assignments

Git

x86 Dissassembly

CPU Arhitecture

CPU Architecture Basics

Operating System

System Call

SJSU - CmpE120 - 
Computer 
Organization and 
Architecture



How OS launches a program

Fundamentals of an OS



 

Upon successful completion of this course, students will be able to:

1. Understand digital logic and how it is used to build a computer system.

2. Explain how CPU functions to run a software program.

3. Develop assembly programs to control the operation of the CPU.

4. Understand the format of instructions and their operations.

5. Understand the role of the other components of a computer system such as buses and memories 

and how

they work together.

Lecture plan:

Number System (CLO 1) 

Binary

Hex

ASCII

Units (CLO 1) 

Kibibytes, Kilobytes etc.

Hardware Architecture (CLO 2) 

Data bus

Address bus

Microcontrollers 

On-chip peripherals review

Compilers and Programming Languages (CLO 3, CLO 4) 

Compiled vs. Interpreted languages

C compiler

Hands-on with a compiler

Learning Objectives

CLO



Reference Material



Reference Material

In the past, we needed to setup special tools on a local computer (i.e.: your laptop) to test software. In 

the modern era, the advanced made by software developers have led us to several tools we can use to 

understand a machine's instruction set.

1. Python Interpreters 

https://www.programiz.com/python-programming/online-compiler/

Python interpreter

2.  Assembly and Emulators 

WeMips

Gobolt

3. Logic Emulators 

Logic.ly/demo

https://circuitverse.org/simulator

Tools

https://www.programiz.com/python-programming/online-compiler/
https://www.python.org/shell/
https://rivoire.cs.sonoma.edu/cs351/wemips/
https://godbolt.org/
https://logic.ly/demo
https://circuitverse.org/simulator


Reference Material

Really awesome book from Robert Plantz:

Introduction to Computer Organization

Books:

Structured Computer Organization 6th Edition

Computer Organization and Design 

Online Resources

https://thinkingeek.com/arm-assembler-raspberry-pi/

https://azeria-labs.com/writing-arm-assembly-part-1/

 

Books and Online Resources

https://bob.cs.sonoma.edu/
https://bob.cs.sonoma.edu/IntroCompOrg-RPi/intro-co-rpi.html
https://csc-knu.github.io/sys-prog/books/Andrew S. Tanenbaum - Structured Computer Organization.pdf
https://ict.iitk.ac.in/wp-content/uploads/CS422-Computer-Architecture-ComputerOrganizationAndDesign5thEdition2014.pdf
https://thinkingeek.com/arm-assembler-raspberry-pi/
https://azeria-labs.com/writing-arm-assembly-part-1/


Basics



Basics

The number system holds significance in terms of writing and expressing code to a computer, typically 

in a programming language. Note that we (as humans) do not use hex or binary numbers that much 

outside of the computer science domain. For example, we don't walk into a supermarket and read 

prices in binary such as $0x10  :)

Often times in programming, we need to express numbers more quickly, and we might say int 

x = 0x10000000  to quickly indicate 32-bit value with bit31  set to 1. Notation  x = 0x10000000  is 

easier than writing x = 268435456  which would be more cryptic for a programmer to realize the 

significance of because the reader of the programming code will not be able to quickly realize that it is 

specifically setting bit31  to value of 1 .

Typical numbers we are familiar with are decimals which are technically "base 10" numbers. So an 

ordinary number that we may be aware of such as 123 can be written as 123 10.

The number 123 could also be written as:

1*102 +2*101 +3*100 which is equal to 100 + 20 + 3 =12310

Binary numbers are always 1s and 0s only. Similar to decimal numbers, binary numbers increase in 

powers of 2, rather than powers of 10. Binary numbers are written by with the "0b" notation, such as 

0b1100

For example, binary 101 or 0b101 can be written as:

Number Systems

Number Types

Decimal

Binary



1*22 +0*21 +1*20 which is equal to 4 + 0 + 1 = 510

One digit of a hex number can count from 0-15, but since we have to represent the hex number using a 

single character, the numbers 0-9 are usual numbers, and the numbers 10-15 are represented by A, B, 

C, D, E, F

Where decimal is a power of 10, and binary is power of 2, hex numbers are powers of 16. Hex numbers 

are written with the "0x" notation, such as 0x10.

For example, hex 0x12 can be written as:

1*161 +2*160 which is equal to 16 + 2 = 1810

As another example, hex 0xC5 can be written as:

12*161 +5*160 which is equal to 192 + 5 = 19710

 

Decimal (base 10) numbers can be converted in a couple of different ways as described here. One of 

the methods is to continue dividing by 2 and note down the remainder as described in the image below. 

The article above also describes a potentially faster method of conversion so be sure to read it!

Hex

Exercises

Decimal to Binary

https://www.wikihow.com/Convert-from-Decimal-to-Binary


Please try converting the following to binary:

1. 125
2. 255
3. 500

Decimal to hex is similar to Decimal to Binary except that we are dealing with powers of 16 rather than 

powers of 2.

My favorite method of conversion from decimal to hex is to first convert the number to binary. For 

example, let's start with a large number such as 23912. We can use the  Decimal to Binary method to 

convert this first to binary:

2391210

Decimal to Hex



0b101110101101000

Split it up to nibbles: 
0b101 1101 0110 1000

Then use the lookup table listed in Hex to Binary: 
0x5D68

Please try converting the following to hex:

1. 125
2. 255
3. 500

The following table can be utilized to convert hex to binary very instantly:

x0x1x2x3x4x5x6x7x8x9xAxBxCxDxExF

0000000100100011010001010110011110001001101010111100110111101111

First row is HEX, and the second row is binary. For whatever hex number we wish to convert, we simply 

locate its equivalent in binary. For instance, if we wish to convert 0x5  to binary, it is 0b0101 , and 0xA5

would be 0b1010.0101  as you can convert one "nibble" (4-bits) at a time.

Let's take another example to convert 0x1BF  to binary; simply break it down by "nibbles":

0x1  --> 0b0001

0xB  --> 0b1011

0xF  --> 0x1111

Answer: 0b0001 1011 1111  

Please try converting the following to binary:

1. 0x55
2. 0x125
3. 0x40000000

For Hex to Binary, we used a lookup table as a "cheat code" :). For Hex to decimal, it would be easier to 

re-write the numbers as powers of 16. For example, to convert 0x1BF  to decimal, we can break it down 

Hex to Binary

Hex to Decimal



to:

0x1  --> 1 * 162 --> 256

0xB  --> 11 * 161 --> 176

0xF  --> 15 * 160 --> 15
256+176+15 = 447

Please try converting the following to decimal:

1. 0x55
2. 0x125
3. 0x40000000

 



Basics

Generally speaking, practiced skill cannot be easily forgotten. It is far better to go through the process 

and practice converting a number, rather than to memorize the process.

Before we get started, have a look at the Tools Page to get started with a Python Interpreter we could 

use for this exercise.

Python Number Converter

Number to Printable Hex
def nibble_to_ascii(nibble: int) -> str:

  """

  This is a comment

  Input: Nibble (4-bits)

  Output: Single character HEX as a string

  Example: Input = 10, Output = 'A'

  Example: Input = 8,  Output = '8'

  """

  table = ['0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F']

  return table[nibble]

def to_hex(number: int) -> str:

    """

    This is a comment

    Input: Number (integer)

    Output: String

    Example: Input = 43605, Output = "0xAA55"

    """

    answer = ""

    # Forever loop

    while True:

http://books.socialledge.com/books/cmpe-120---computer-organization-and-architecture/page/tools


Write a function to_binary()  that takes a number, and returns the string equivalent version of the 

number in binary. You can borrow the template above of to_hex()  function and most of the logic might 

be similar except that we would be dividing number by 2 rather than 16.

 

        # Integer divide using the // operator

        quotient = number // 16

        # Get the remainder using the % operator

        remainder = number % 16

        # Accumulate result

        answer = nibble_to_ascii(remainder) + answer

        # Set the number we need to use for next time

        number = quotient

        # We break the "loop" when division turns to zero

        if (quotient == 0):

            break

    return "0x" + answer

print(to_hex(123456789))

print(to_hex(0b1010101))print(to_hex(0xDEADBEEF))

Exercise



Basics

I fear that most of the technical articles on the Internet misinterpret some of the common storage units.

This article does a good job at clearly providing the relevant information:

Storage Units

A kilobyte is made up of either 1,000 or 1,024 bytes. This distinction can be a little “

https://study.com/learn/lesson/data-storage-units-kb-mb-gb-tb.html


Apart from the funny picture above (Baker's Kilobyte?), the real story can be uncovered by referencing 

the picture below. Thanks to this original article that does a great job at providing the valuable 

information.

So while most people might misinterpret "kilo" as 1024 when it comes to storage units, the right way is 

thus "kibibytes". It would be an interesting conversation to discuss kibibytes as most people may not be 

aware, and this would make you look incredibly smart (and correct) :)

Here is another great image for reference:

tricky and has to do with the difference between binary math (which computers rely 

on) and base-10 math (which most humans use in daily life). In practical terms, both 

definitions of kilobyte are used. In some cases, a distinction will be made between a 

kilobyte (1,000 bytes) and a kibibyte (1,024 bytes), though this is less common.

The Real Story

https://ozanerhansha.medium.com/kilobytes-vs-kibibytes-d77eb2ff6c2a


Based on the image above, the following should be used using capital letter first, then lowercase i and 

then finally capital B for bytes.

KiB

MiB

GiB

TiB

PiB

etc.

Reference Articles



https://danielmiessler.com/blog/the-difference-between-kilobytes-and-kibibytes/

https://study.com/learn/lesson/data-storage-units-kb-mb-gb-tb.html

https://ozanerhansha.medium.com/kilobytes-vs-kibibytes-d77eb2ff6c2a

 

 

 

 

 

https://danielmiessler.com/blog/the-difference-between-kilobytes-and-kibibytes/
https://study.com/learn/lesson/data-storage-units-kb-mb-gb-tb.html
https://ozanerhansha.medium.com/kilobytes-vs-kibibytes-d77eb2ff6c2a


Basics

Diagram link

 

Gates

AND

OR

XOR

https://app.diagrams.net/#G1xiiAkvdBTaJ0YCrKuNtsD4efjsXvwDu7#{"pageId":"YF3znzTOtYqeCIpRFWgi"}




Programming Languages



Programming Languages

Assuming that there are two files to be compiled in C, the overall flow to yield an executable is the 

following:

The commands used to compile the two files above are:

How program is compiled in C

gcc -c library.c

gcc -c entry_point.c 

gcc -o executable library.o entry_point.o

# Run the program:./executable



Assignments



Assignments

This is definitely not an exhaustive tutorial about learning Git... Google would be better to reveal several 

great tutorials about Git. What we focus on instead is a simplistic workflow about publishing a "Pull 

Request" in Git.

Gitlab provides services that allow hosting your project on a remote repository and provides additional 

features that help in continuous integration and deployment. Such as code sharing, code review, and 

bug tracking.  

For better or worse, we have decided to useGitlab.com for the repository. You are also required to use 

this Gitlab repository because that keeps the entire class aligned to a single server type and reduces 

fragmentation while increasing the efficiency of the teacher and the ISA team.

For this part, establish your Gitlab.com account.

1. Go to GitLab.com and create an account.
2.  Sign in to GitLab.

In addition, also install Git to your machine such that you can successfully execute the git  Commands 

from a terminal.

1. Download git from GIT_Install and install git.
2. Check git is installed on your system by using the git --version  command in the terminal.

Git

What is Gitlab?

Part 0: Setup Gitlab account

How to set up a Gitlab account?

https://gitlab.com/users/sign_in?__cf_chl_jschl_tk__=ed8fca8914c93977c8f260cef7139a3052fe0a59-1612903080-0-AXaW60uR5_sMWPEn3MulZtSx4B-qNsLmFRIHHNnrE-T0fv1qlm_e-cTan9w6Ej-qYHAkF5kWNBBHMGkHw0XegKrOSBMdiFwU_hVWL3oyNfPqVuebPkM80Qa_jmUryWuRXa-uUaiKQKz5Ncgsb5JDVzB_5mSAyEheI58t8hJRL_K7aa_L_S9iePn9-1Kpki83EKxq4fxzKdrTqKzF55k0EgqO-swioKIzPudgEs7D8i2yOe0SFCridRlHb7-i7jMkjvYVm7CBEsbUkP0mwNgkEIsAkgWVo8s_6wHwDRDxosInP3Tpl7x0xUGrFtoRY6M440FXb2MJ9UqJtQIajmY5oTMlNbEVmb0-UUFzYhsOoA5bquWTCa1AvKsP2EdwvtypMQ
https://gitlab.com/users/sign_in?__cf_chl_jschl_tk__=ed8fca8914c93977c8f260cef7139a3052fe0a59-1612903080-0-AXaW60uR5_sMWPEn3MulZtSx4B-qNsLmFRIHHNnrE-T0fv1qlm_e-cTan9w6Ej-qYHAkF5kWNBBHMGkHw0XegKrOSBMdiFwU_hVWL3oyNfPqVuebPkM80Qa_jmUryWuRXa-uUaiKQKz5Ncgsb5JDVzB_5mSAyEheI58t8hJRL_K7aa_L_S9iePn9-1Kpki83EKxq4fxzKdrTqKzF55k0EgqO-swioKIzPudgEs7D8i2yOe0SFCridRlHb7-i7jMkjvYVm7CBEsbUkP0mwNgkEIsAkgWVo8s_6wHwDRDxosInP3Tpl7x0xUGrFtoRY6M440FXb2MJ9UqJtQIajmY5oTMlNbEVmb0-UUFzYhsOoA5bquWTCa1AvKsP2EdwvtypMQ
https://gitlab.com/users/sign_in?__cf_chl_jschl_tk__=ed8fca8914c93977c8f260cef7139a3052fe0a59-1612903080-0-AXaW60uR5_sMWPEn3MulZtSx4B-qNsLmFRIHHNnrE-T0fv1qlm_e-cTan9w6Ej-qYHAkF5kWNBBHMGkHw0XegKrOSBMdiFwU_hVWL3oyNfPqVuebPkM80Qa_jmUryWuRXa-uUaiKQKz5Ncgsb5JDVzB_5mSAyEheI58t8hJRL_K7aa_L_S9iePn9-1Kpki83EKxq4fxzKdrTqKzF55k0EgqO-swioKIzPudgEs7D8i2yOe0SFCridRlHb7-i7jMkjvYVm7CBEsbUkP0mwNgkEIsAkgWVo8s_6wHwDRDxosInP3Tpl7x0xUGrFtoRY6M440FXb2MJ9UqJtQIajmY5oTMlNbEVmb0-UUFzYhsOoA5bquWTCa1AvKsP2EdwvtypMQ
https://git-scm.com/


Use the Gitlab UI from their website to create a new project. After you setup a new project, you will 

clone the project on your laptop.

Set the visibility to public such that we can access your repository conveniently.

1. Go to your newly forked project’s Settings
2. Change Visibility Level to Public

The first thing you want to do before you init is to add a project on the Git website to see the “Setting up 

a new Git repository” section. If you have a folder with code that is not on Git, and you wish to put it on 

the Git server, then you need to initialize Git into your folder. This creates a .git  folder, and the 

current directory is now a Git repository. The  .git  folder contains Git information such as branches. 

Initializing your folder is local to your computer and does not yet upload onto the server.

For this assignment, we will instead clone a repository rather than initializing the repository. For the 

repository you created, you can “clone” it into a directory and start working on it. Cloning it will download 

the entire repository as well as a .git  folder. Note that the clone is different from “pull”. This will be 

explained later. Just use this command once at the beginning of the project unless you want multiple 

folders.

The process of checking-in new code to your forked repository will involve "Branch Workflow". There 

are actually a number of ways to contribute code to your repository, and the branch workflow is just one 

of them that we will choose to use.

We are not going to discuss that in detail because it is already captured well in this awesome article. 

Part 1: Create Project

Change project visibility

Part 2: Clone Repository

# Downloads entire repository to current directory

$ git clone <repo>

# Downloads entire repository to selected directory$ git clone <repo> <directory>

Part 3: Branch Workflow

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow


We will summarize the process that you will use to do this. The $  indicates the commands you should 

try.

 

The typical name of a request to merge code is called a "Pull Request" or a "Merge Request". This is 

the chance to review the code and merge the code. In the end,  Part 3  you have a branch that only 

exists on your computer. In case you lose your computer or your storage device dies, then you will lose

# See what is going on

$ git status

On branch master

# Create a new "branch" of code to work on

# You can use any name, and feature/foo is just a convention

$ git checkout -b feature/hw1

Switched to a new branch 'hw1'

# Add or modify a file we want

$ touch file.txt

# Tell git to add it to be committed

$ git add file.txt

# Check what is going on

$ git status

On branch feature/hw1

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: file.txt

# Commit the change with a message

$ git commit -m "added file.txt"

[feature/hw1 5f76839] added file.txt

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 file.txt

# Check what is going on

$ git status

On branch feature/hw1nothing to commit, working tree clean

Part 4: Merge Request (MR)



any work even though you have "committed" a change.

The distinction is that a commit only commits to your storage device, but does not send the data or the 

branch to the Git server. To actually push the code to the Git server, simply type git push origin head .

This command will generate a URL for you, so copy and paste this URL to your web browser. For 

example, the URL above is: 
https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/new?merge_request%5Bsource_branch%5D=feature%2Fhw1

This will lead you to generate your "Merge Request" . At the end of the web page that loads, click on 

"Submit Merge Request". At this point, you can view the changes, get feedback from others, and if the 

code looks good, you can then merge the code. But wait ... rarely will you be able to merge code 

without iterating and revising it, and that is what Part 5 is for. 

Granted that you have an MR already out there, and you have got feedback from others, this section 

will teach you how to revise or amend your code.

$ git push origin head

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 12 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 262 bytes | 262.00 KiB/s, done.

Total 2 (delta 1), reused 0 (delta 0)

remote: 

remote: To create a merge request for feature/gpio_blinky_in_periodics, visit:

remote:   https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/new?merge_request%5Bsource_branch%5D=feature%2Fgpio_blinky_in_periodics

remote: 

To gitlab.com:sjtwo-c-dev/sjtwo-c.git

 * [new branch]      head -> feature/gpio_blinky_in_periodics

Part 5: Revise an MR

# Modify any code

# In this case, we will dump 'hello' to our previously committed file: file.txt

$ echo "hello" >> file.txt



After the git push  command, your MR will be updated on the browser. This way, you can continue to 

revise your MR per the suggestions of other people. When you are satisfied with your MR, you can 

seek approval and officially hit the Merge button on the Gitlab.com webpage.

After you have merged your MR, it is time to go back to the master branch and grab the latest changes. 

Other users may have merged their code also, so pulling the latest master branch is going to get you 

the latest and greatest code.

There is of course A LOT more to Git, but once you master the basics, you can then Google your way 

through the rest of the world you will face such as:

Handling merge conflicts

Check out other people's branches

# Check what is going on

$ git status

On branch feature/hw1

Changes not staged for commit:

  (use "git add <file>..." to update what will be committed)

  (use "git checkout -- <file>..." to discard changes in working directory)

	modified:   file.txt

# Add the file we want to re-commit (another commit on top of previous)

$ git add file.txt

$ git commit -m "Added hello to file.txt"

# Update the remote branch and the Merge Request$ git push origin head

Part 6: Final Step

# Go to the master branch

$ git checkout master

# Pull the latest master$ git pull origin master

Part 7: Going beyond . . .



Rebase on the latest master branch.

The process of checking-in new code to your forked repository will involve "Branch Workflow" as 

explained in PART 3. The following steps will help you to add new code/files for each of your lab 

submissions.

Goto cmd OR terminal OR git bash. CD to the location of the cloned project(cd sjtwo-

c/projects/lpc40xx_freertos/l5_application) and run the following commands.

$ git status 

# Assume that you are on your feature branch

$ git checkout master

$ git pull origin master

# Go back to the previous branch you were working with (feature)

$ git checkout -

# Apply our commits to the latest master$ git rebase master

Part 8: Steps to create MR for Lab Submissions

 # You can use any name, it's better to use lab with the number as a branch name.

 # such as lab1,lab2

$ git checkout -b lab1

Switched to a new branch 'lab1'

# Add or modify files as per the given lab assignment

# for example lab 1 requires two files

$ touch lab_multitasks.c

$ touch lab_multitasks.h 

# Check what is going on

$ git status

On branch lab1

Untracked files:

  (use "git add <file>..." to include in what will be committed)

	lab_multitask.c

	lab_multitask.h



# Tell git to add it to be committed

$ git add .

# Check what is going on

$ git status

On branch lab1

Changes to be committed:

  (use "git reset HEAD <file>..." to unstage)

	new file:   lab_multitask.c

	new file:   lab_multitask.h

# Commit the change with a message

$ git commit -m "added lab1 files"

[lab1 e88f23d] added lab1 files

 2 files changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 projects/lpc40xx_freertos/l5_application/lab_multitask.c

 create mode 100644 projects/lpc40xx_freertos/l5_application/lab_multitask.h

# Check what is going on

$ git status

On branch lab1

nothing to commit, working tree clean

# Update the remote branch and the Merge Request

$ git push origin head

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 12 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 262 bytes | 262.00 KiB/s, done.

Total 2 (delta 1), reused 0 (delta 0)

remote: 

remote: To create a merge request for lab1, visit:

remote:   https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/new?merge_request%5Bsource_branch%5D=lab1

remote: 

To gitlab.com:sjtwo-c-dev/sjtwo-c.git

 * [new branch]      head -> lab1

 # Assume that you are on your lab branch

 # To comeback to master branch



Create a merge request for each lab and use the merge request URL for your lab submissions.  

Please follow PART 4 to generate and submit "Merge Request" on Git.

After submitting a merge request you will receive a new URL on the browser. Use that URL for 

your canvas submission.

Follow the same steps for creating the next lab branch(such as hw1), add new files to the hw 

branch(such as hw.py ), and create a merge request for the submission after completing your GPIO 

driver.   

 

 

$ git checkout master



Assignments

Purpose of this assignment is to reverse engineer x86 assembly language of C code.

1. Copy and paste the code below to https://godbolt.org
2. Use the following compiler for the ASM code generation:  x86-64 gcc 12.2
3. Under the compiler options, use  -Os  
4. Explain each and every single line of the ASM program 

You do not have to explain the C code

Attempt to provide the WHY rather than the WHAT. For example, do not just say "Moving R1 to 

R0" but state that "Moving R1 to R0 such that we can pass that as the first parameter to printf"

x86 Dissassembly

#include <stdio.h>

#include <stdlib.h>

__attribute__((noinline))

int sum(int a, int b) {

    return a + b;

}

__attribute__((noinline))

void print_the_value(int value) {

    printf("%d", value);

}

int entry_point() {

    int a = rand(); 

    int b = rand(); 

    int result = sum(b, a);

    print_the_value(result);}

Problem:

https://godbolt.org/


CPU Arhitecture



CPU Arhitecture

Physical layout depiction of a CPU:

Note the following:

CPU (ALU) is only connected to Registers

Registers are connected to memory

CPU can process an instruction to add to numbers but this operation can only be applied to registers 

We cannot apply mathematical operations on the memory itself

CPU Architecture Basics



- Purpose of Registers

 

Registers

https://azeria-labs.com/arm-data-types-and-registers-part-2/


Operating System



Operating System

System Call



Operating System

How OS launches a program



Operating System

A good example can be reference at section 6.5 of Structured Computer Organization.

Fundamentally, an OS provides services:

File services (open, read, write, close etc.)

Networking services (open, read, write, close internet socket) 

Berkeley socket interface

Multi-tasking services 

Creating multiple threads

Dictating priorities for threads

An interrupt is an asynchronous function call that can interrupt normal flow of a program.

Fundamentals of an OS

What is an OS?

Interrupt

// HW and OS work together to invoke this function

// whenver a keyboard key is pressed

// Regardless of where you are at your_program()

// this function can be invoked ascynhronously 

void interrupt_keyboard(void) {

}

// Thread that never exits

// This calls all the sub-functions synchronously

void your_program(void) {

  while (forever) {

    check_for_brake_pedal();

    actuate_brakes();

https://csc-knu.github.io/sys-prog/books/Andrew S. Tanenbaum - Structured Computer Organization.pdf


Virtual memory is not purely virtual memory, it is virtual memory addresses that maps to real and 

physical hardware memory.

  }}

Kernel vs. User Space
// OS use "SWI" or "Software Interrupt"

// "Software Interrupt" really means a "Deliberate Interrupt request to the HW"

void deliberate_interrupt(void) {

}

// 

void your_program(void) {

  while (forever) {

    int file = open("file.txt");

  }

}

// Psuedo-code for open

// This is what the open function looks like inside the OS

void open(filename) {

  R4 = open_request_number;

  R5 = filename

  SWI

}

Virtual Memory

POSIX Interface


