
Project Introduction and Guidelines

Project Hints

Unit Testing code that touches the HW registers

Use single periodic callback if possible

CANTools

Exploring DBC Autogenerated API

Class Project and
Useful Articles

1. Four SJtwo Development Kits + 4 CAN Transceivers
2. Bridge and Sensors Accessories - Bluetooth or Wifi Breakout Board and Ultrasonic Sensors
3. Motor Controller Accessories - RPM Sensors
4. GEO Controller Accessories: GPS Breakout Board, Compass, GPS Antenna
5. Extra LCD and LEDs for visual effects.
6. Mechanical - RC Car, RC CAR Battery charger, Lithium-Ion Battery
7. PCB parts and other Miscellaneous parts for Hardware.

Various different controllers are used and each should have limited and exclusive responsibilities. Use

this article as a reference to derive your project schedule and individual team member tasks.

Project Introduction and

Guidelines

Shopping List

Controllers

An example of how GPS coordinates are sent from the Mobile phone:

1. Mobile phone sends data as ASCII text to the Bridge
2. The bridge controller receives information over UART
3. The bridge controller sends data using DBC/CAN to the Geological
4. No other controller should need to know the destination coordinates because the Geological

controller will guide the Driver controller with its compass heading, and tell it to stop when

necessary

Mobile application development

3+ General developers (could be dedicated developer per controller or just collaborative effort)

Testing and Integration person (2 people who can work together)

Requirements

Shall be interfaced to all of the distance sensors

Note that your board only has 3 ADC channels if you choose to use this interface

Note that ultrasonic sensors can collide in their sound waves and interfere with each other. It may

be better to use different frequency based sensors (maybe different vendor or models) to

minimize the interference.

Shall output all sensor information with a minimum refresh rate of 20Hz

Shall provide the interface (such as Bluetooth serial) to a mobile application running on a phone

The typical interface to a Bluetooth or Wifi is UART

Suggested Roles

1: Bridge and Sensor Controller

http://books.socialledge.com/uploads/images/gallery/2020-03-Mar/sj2-243_v2.png

Bluetooth requires pairing and is usually stable after that

Wifi would require your wi-fi to act as an access point for your mobile phone to

Both interfaces should work, and you can pick one based on past semesters' reports

A recommendation is that a Mobile phone sends a line of command terminated by a newline, and

then the Bridge controller can parse the information (such as using scanf)

Required but low priority:

Provide battery voltage reading to Mobile Application and possibly to the DRIVER to output on

the LCD

Requirements

Shall be interfaced with speed sensors or wheel encoders to provide speed information

This should be transmitted on the CAN bus as either kph or mph; usually, the units will be small

and you could use DBC scale of 0.001 or 0.01

Shall be interfaced to motor controllers (or servo controller) to control steering and speed

Recommend hobby grade RC car (such as Traxxas), and not a $20 RC car from Amazon

Provide self-test capability button

Self-Test pressed, so Driver controller should be commanded to a 5 seconds wheel test mode

This should include forward, backward motion, and steering test

Shall process the speed command, and compensate for the grade of the ground (uphill or downhill)

For example, the DRIVER may command 0.5 kph, and the motor controller should process the

wheel encoder and use a simple PID control loop to match the command regardless of the grade

or battery power

Requirements

Shall be interfaced to a magnetometer

Shall be interfaced with a GPS

Shall provide raw GPS and compass readings

Shall have the ability to "set destination" and then provide heading degree towards destination

The driver controller should not need to get involved in GPS data. It should simply receive a

compass destination heading, and an actual compass heading. When there is no obstacle, it

should simply try to take its current heading towards the destination, heading (which is just a

2: Motor Controller

3: Geological Controller

compass degree)

Shall have the waypoints algorithm

Requirements

Shall be interfaced to an LCD display to output meaningful and diagnostic information

Sensor values commanded motor values etc.

A Recommendation is to use a simple UART or I2C based LCD

Something like this

Shall receive all relevant sensor messages and process them for obstacle avoidance

Shall receive compass actual degree, and heading degree (towards the destination)

Shall have the obstacle avoidance algorithm

In the absence of any obstacles, it shall use the compass to follow the GPS destination

Shall send output drive commands to the Motor Controller

Requirements

Minimize the buttons (and hence the code)

If there is no Bluetooth connection, automatically display a list of Bluetooth devices

Once connected, automatically show the Google Maps page

Shall have Google Maps or similar for a user to pick the destination

Shall transmit the destination to the Bridge Controller as necessary

The Optional requirement to display car data, such as speed, compass, and anything else useful to

you during debugging. Definitely, some extra credit opportunity, here based on how well you

accomplish your Mobile Application.

The definite article More (Definitions, Synonyms, Translation)

4: Driver and LCD Controller

5: Mobile Application

https://www.sparkfun.com/products/9568

There are different domains in your project that we need to ensure are working very robustly.

1. Distance Sensors

One person should focus solely on ensuring that VERY reliable values are being output from the sensor

controller at least at 20Hz. Consider the following test case scenarios:

Smoke tests: Test values while stationary

Interference tests: With a known test scenario (such as blocking one side), are the sensor values

stable? For example, if we are blocking only the right side, is the left sensor value still stable?

Test on a moving car: Are the sensor mounts stable? Are the sensors pivoted downwards such that

the floor is appearing to be an obstacle?

There are many more test scenarios but the overall objective is to ensure that sensors are very

reliable.

2. Compass

Test in stationary vehicle

Test while vehicle is moving

Does the tilt of the vehicle make a big difference?

Test while moving the front motor

Test while moving the rear motor

Test while moving both motors

Is there magnetic interference?

3. Motor and wheel encoder

Test with varying battery voltage

Test with different speed command and ensure RPM consistency

The rest is mainly more and more testing, but there should be a systematic approach to this.

Focus

A common issue for everyone is how to have separate projects in your Git repo.

1. One option is to create a different folder, one for each project

Maybe have a top-level DBC file, and manually copy to all other folders upon update

Maybe infrastructure code can find the DBC file at the root level directory itself? This might be a

simple modification in the Python-based scons script

2. Another option is to use different Git branches

Single folder for your project, such as lpc40xx_freertos but different "virtual" master branches

git checkout master_driver

git checkout master_sensor

The "master" branch is where the DBC is at, so when people want to get the latest, what they

do is:

git checkout master_driver

git checkout master

git pull origin master

git checkout master_driver

git rebase master

git push origin head

How can you nest an external repository's DBC file in your project repository.

Git submodule

Your DBC can live in a completely separate repo, maybe this repository is nothing but a single

DBC file

You can nest this external git submodule as a folder inside your lpc40xx_freertos directory

Project Hints
 Git strategy to share common DBC file

So if someone changes the DBC file at the dedicated dbc repo, then everyone needs to update it

git checkout master

cd dbc_directory (nested git submodule)

git pull origin master (of the external dbc repo, this will pull in the latest changes from there)

cd - (step outside of the nested git submodule)

git add dbc_directory (you update the githash that are pointing to the external repo's commit)

git commit -m "update dbc"

git push origin head

It is advised to have a state machine to move your car, such as forward, forward to reverse and reverse

to forward.

Motor Control

void motor__run_state_machine_10hz(int call_counter) {

 switch (current_state) {

 case forward:

 if (desired_movement == reverse) {

 current_state = transient_state;

 }

 break;

 case transient_state:

 if (entry_to_this_state) {

 transient_state_entry_counter = call_counter;

 }

 if (call_counter >= (transient_state_entry_counter + 5) { // 500ms elapsed

 if (desired_movement == reverse) {

 current_state = reverse;

 } else {

 // ...

 }

 }

 break;

The motor controller should use a simple PID to control the motors.

Students oftentimes tend to try to handle CAN frame reception in multiple functions. The problem is that

this creates a non-deterministic operation as some frames may be dropped in one place in code, and

may not be handled where you really mean to handle them.

Note the following properties:

A while loop to empty out the CAN receive queue

Handling just one frame per function call will accumulate CAN frames leading to data loss

After creating a message header, call all decode functions

Only one decode function will decode at most since the message header will match only once

This reduces your testing effort as you do not need manual switch/case statements

 case reverse:

 // ...

 }}

Simple PID

// return percentage 0-100 which then may need to be translated to the Servo PWM

float motor_pwm_1hz(float actual_speed_kph, float target_speed_kph) {

 // Also handle the case of deceleration or a complete stop

 if (0 == target_speed_kph) {

 return 0;

 }

 // Handle other cases

}

Receive CAN in only one function

void can_handle_all_frames(void) {

If you have a sensor such as a compass that operates using I2C, then it is advised to use the built-in

I2C CLI command on your SJ2 board to test out the sensor registers. Make sure you run the CLI task in

your main.c and then simply type "help i2c" to explore the CLI command and trial the sensor data.

If the compass is interfaced on I2C and the slave address of the compass is 0x38. Then you can read a

particular register using the CLI command i2c read SLAVE_ADDRESS REGISTER_ADDRESS <n>

Similarly, you can directly use the CLI to write the value to a particular register address of Compass by

 while (can_rx(...)) {

 msg_hdr = create_msg_header();

 dbc_decode_...();

 dbc_decode_...();

 }}

Test I2C Sensor

http://books.socialledge.com/uploads/images/gallery/2021-04-Apr/ZKpScreen-Shot-2021-04-20-at-6.22.43-PM.png

using i2c write SLAVE_ADDRESS REGISTER_ADDRESS VALUE

Use the following DBC design:

Be sure to keep in mind:

A GPS coordinate is usually only sent with six decimal places maximum

A float , is always a 32-bit float (IEEE standard)

A float can only store up to 6 decimal points

However, if your number changes from 0.123456 to 456.123456 , then the precision is actually

lost, and the number may actually be truncated to this: 456.123444

More things to keep in mind:

float is supported by HW on the ARM CM-4

But a "double" uses software floating-point instructions

Transmit GPS coordinates in between controllers

BO_ 201 GPS_DESTINATION: 4 BRIDGE_CONTROLLER

 SG_ GPS_DESTINATION_LONGITUDE : 0|32@1+ (0.000001,0) [0|0] "" GEO_CONTROLLER

http://books.socialledge.com/uploads/images/gallery/2021-04-Apr/Screen-Shot-2021-04-20-at-6.51.25-PM.png

The algorithm should not be overcomplicated, and the checkpoints can just be static const array in your

code.

Keep in mind:

Mobile application should only send the destination, and not these checkpoints

The Geo controller has the pre-mapped, constant points in the compiled ARM CPU code

Checkpoints Algorithm

// Probably already defined in your *.h file

typedef struct {

 float long;

 float lat;

} gps_coordinates_t;

// Define in your *.c file

static const gps_coordinates_t locations_we_can_travel[] = {

 {a, b},

 {c, d},

 {e, f},

http://books.socialledge.com/uploads/images/gallery/2020-04-Apr/sj2-checkpoints.png

 {g, h},

}

/**

 * Algorithm should iterate through all locations_we_can_travel[] and find:

 * - Another point that is closest to origin

 * - while also simultaneously closer to the destination at the same time

 *

 * Corner case: If next point is the destination itself, which is also possible

 *. and in this case, you should flag that destination has been reached

 */gps_coordinates_t find_next_point(gps_coordinates_t origin, gps_coordinates_t destination);

 This article guides you on how to unit-test code that reads or writes hardware registers of your SJ

development board.

Before we solve the problem, let us write better code that is self expressive and does not require

comments to understand its intent.

Unit Testing code that

touches the HW registers

// Typical code

int get_ultrasonic_pulse_width(void) {

 // Send a pulse width

 LPC_GPIO1->CLR = (1 << 2);

 delay_us(10);

 LPC_GPIO1->SET = (1 << 2);

 const uint32_t previous = time_now();

 while (LPC_GPIO1->PIN & (1 << 3)) {

 ;

 }

 return time_delta(previous);}

static void send_pulse_to_ultrasonic(void) {

 const uint32_t ultrasonic_pulse_pin = (1 << 2);

 LPC_GPIO1->CLR = ultrasonic_pulse_pin;

 delay_us(10);

 LPC_GPIO1->SET = ultrasonic_pulse_pin;

And the next level:

}

static void wait_for_ultrasonic_pulse_to_bounce_back() {

 while (LPC_GPIO1->PIN & (1 << 3)) {

 ;

 }

}

// Notice the clarity of this function compared to the previous code snippet

int get_ultrasonic_pulse_width(void) {

 send_pulse_to_ultrasonic();

 const uint32_t previous = time_now();

 wait_for_ultrasonic_pulse_to_bounce_back();

 return time_delta(previous);}

// Separate header file to abstract the hardware, such that we can mock out this API

// file: ultrasonic_pins.h

void ultrasonic_pins__set_pulse(bool true_for_logic_high);

bool ultrasonic_pins__get_input_pin_value(void);

#include "ultrasonic_pins.h"

static void send_pulse_to_ultrasonic(void) {

 // This can now move to ultrasonic_pins.c

 // const uint32_t ultrasonic_pulse_pin = (1 << 2);

 ultrasonic_pins__set_pulse(true);

 delay_us(10);

 ultrasonic_pins__set_pulse(false);

}

static void wait_for_ultrasonic_pulse_to_bounce_back() {

 while (ultrasonic_pins__get_input_pin_value()) {

 ;

 }

}

int get_ultrasonic_pulse_width(void) {

 send_pulse_to_ultrasonic();

 const uint32_t previous = time_now();

 wait_for_ultrasonic_pulse_to_bounce_back();

 return time_delta(previous);}

The problem with multiple callbacks is that the higher rate can interrupt a lower rate callback.

Use this instead:

Use single periodic callback if

possible

int number = 0;

void periodic_callback_10hz(uint32_t count) {

 number++;

}

// This can interrupt the 10hz in the middle of its operations

void periodic_callback_100hz(uint32_t count) {

 number++;

}

int number = 0;

void periodic_callback_10hz(uint32_t count) {

 //number++;

}

// This can interrupt the 10hz in the middle of its operations

void periodic_callback_100hz(uint32_t count) {

 if (0 == (count % 10)) {

 number++;

 }

 number++;

}

CANTools is a Python project that can read DBC files, and provide a lot of useful information.

https://pypi.org/project/cantools/

CANTools

https://pypi.org/project/cantools/

Exploring DBC

Autogenerated API

DBC Encode API

void can_transmitter_option1(void) {

 dbc_DRIVER_HEARTBEAT_s heartbeat={};

 dbc_SENSOR_SONARS_s sensor_values={};

 dbc_message_header_t header;

 can__msg_t can_msg = {};

 header = dbc_encode_SENSOR_SONARS(can_msg.data.bytes, &sensor_values);

 can_msg.msg_id = header.message_id;

 can_msg.frame_fields.data_len = header.message_dlc;

 can__tx(can1, &can_msg, 0);

 header = dbc_encode_DRIVER_HEARTBEAT(can_msg.data.bytes, &heartbeat);

 can_msg.msg_id = header.message_id;

 can_msg.frame_fields.data_len = header.message_dlc;

 can__tx(can1, &can_msg, 0);}

DBC Encode and Send API

void can_transmitter_option2(void) {

 dbc_DRIVER_HEARTBEAT_s heartbeat={};

 dbc_SENSOR_SONARS_s sensor_values={};

 void *unused = NULL;

 dbc_encode_and_send_DRIVER_HEARTBEAT(unused, &sensor_values);

 dbc_encode_and_send_DRIVER_HEARTBEAT(unused, &heartbeat);

}

bool dbc_send_can_message(void * argument_from_dbc_encode_and_send, uint32_t message_id, const uint8_t bytes[8], uint8_t dlc) {

 can__msg_t can_msg = {};

 can_msg.msg_id = message_id;

 can_msg.frame_fields.data_len = dlc;

 memcpy(can_msg.data.bytes, bytes, sizeof(can_msg.data.bytes));

 can__tx(can1, &can_msg, 0);}

