
LAB: Periodic Scheduler

LAB: Git

Git Basics

Introductory Labs

The objective of this assignment is:

Set up your development environment

Learn how to run unit-tests

Trial how to input your code to the Periodic Scheduler

For CmpE243, we will not be focusing on typical RTOS tasks like CmpE244. The reason is that we wish

to use an approach that is typically seen in the Automotive industry, which is to design the logic of your

autonomous RC car based on software instructions that occur periodically and consistently.

Set up your development environment for this portion of the lab. Follow through and read all of the

README files carefully that are linked here. Make sure you are able to run the unit tests, and also

compile a hex file that you can load onto your board.

You can watch the following video to get started:

Youtube: Compile project

Youtube: Scons build system

For this portion, edit the code such that it will start to blink four LEDs driven by the periodic scheduler. In

particular, read the documentation of the main.c file, and enable the code for the periodic scheduler.

LAB: Periodic Scheduler

Part 0: Build Environment

Part 1: Blink LEDs

https://gitlab.com/sjtwo-c-dev/sjtwo-c
https://www.youtube.com/watch?v=--AL0VKzvU8&t=141s
https://www.youtube.com/watch?v=EbiCummaIM0&t=31s

Study the overall structure of main.c , and then switch a #if (1) to #if (0) such that it will disable

two blinky tasks, and instead run the periodic scheduler. The name "periodic scheduler" may sound

fancier than what it actually is, but this is just a trivial piece of code that invokes function at

periodic_callbacks.c file.

There are a few things to note for future reference:

The stack size is chosen with a same value, and depending on the complexity of the functions you

invoke at the periodic_callbacks.c file, you may have to increase this memory size. Also note that

there are five tasks total that run the periodic callbacks, so if you input 2K, then you will end up using

// main.c

static void create_blinky_tasks(void) {

 /**

 * Use '#if (1)' if you wish to observe how two tasks can blink LEDs

 * Use '#if (0)' if you wish to use the 'periodic_scheduler.h' that will spawn 4 periodic tasks, one for each LED

 */

#if (0)

 // ...

#else

 periodic_scheduler__initialize();

 UNUSED(blink_task);

#endif

}

// periodic_scheduler.c

void periodic_scheduler__initialize(void) {

 /**

 ...

 */

 static StackType_t hz1_stack[4096 / sizeof(StackType_t)];

 static StackType_t hz10_stack[4096 / sizeof(StackType_t)];

 static StackType_t hz100_stack[4096 / sizeof(StackType_t)];

 /**

 ...

 */}

10K for the memory footprint. Recommended size is 2-4K.

The logic at periodic_callbacks.c the file should be function calls into your other code modules.

This way, unit tests of this file will remain simple. You do not want to input branch statements here

because this would make your code less modular, and difficult to unit-test.

Insert additional code to one of the periodic callbacks, and then observe its operation. In the example

below, we are going to demonstrate the right way to build a module that reads a switch and lights up an

LED.

DO NOT do the following because what you have done is that cluttered all the things that need to occur

periodically. If we go down this path, you will end up creating a giant periodic_callbacks.c file that will

be difficult to test, and your code will not be modular or broken down into these pieces. Unit-testing

code will also be difficult because now you have to not only test the switch and LED logic but also test

more unrelated subsequent code.

Instead, follow good code design, and create "modules" for your code. Using this approach, you have

refactored your switch and LED logic to a new code module: switch_led_logic.h . You can test this

code module separately and then testing the periodic_callbacks.c a code module is also

Part 2: Switch and LED code module

// periodic_callbacks.c -- BAD example

static gpio_s my_led;

static gpio_s my_switch;

void periodic_callbacks__initialize(void) {

 my_led = gpio__construct_as_output(GPIO__PORT_2, 0);

 my_switch = gpio__construct_as_input(GPIO__PORT_2, 1);

}

void periodic_callbacks__1Hz(uint32_t callback_count) {

 gpio__toggle(board_io__get_led0());

 if (gpio__get(my_switch)) {

 gpio__set(my_led);

 } else {

 gpio__reset(my_led);

 }}

straightforward since you only have to set up a couple of "expect" function calls.

Of course, you are not done yet, and you also have to modify test_periodic_callbacks.c

// periodic_callbacks.c -- Good example

#include "switch_led_logic.h"

void periodic_callbacks__initialize(void) {

 switch_led_logic__initialize();

}

void periodic_callbacks__1Hz(uint32_t callback_count) {

 gpio__toggle(board_io__get_led0());

 switch_led_logic__run_once();}

#include "Mockboard_io.h"

#include "Mockgpio.h"

// Add mock of your new code module

#include "Mockswitch_led_logic.h"

#include "periodic_callbacks.h"

// Add expect during the periodic_callbacks__initialize() function

void test__periodic_callbacks__initialize(void) {

 switch_led_logic__initialize_Expect();

 periodic_callbacks__initialize();

}

void test__periodic_callbacks__1Hz(void) {

 gpio_s gpio = {};

 board_io__get_led0_ExpectAndReturn(gpio);

 gpio__toggle_Expect(gpio);

 switch_led_logic__run_once_Expect();

 periodic_callbacks__1Hz(0);}

Part 3: Experiment with Task Overrun

Deliberately overrun one of the periodic tasks and observe that your board will reboot. Since this will be

sort of a "throw-away" code, you can opt to skip the unit-tests. Here is a sample code that will

deliberately reboot the processor because of the missed deadline of the 1Hz function.

It is strongly advised NOT to skip the unit-tests in general. But if you are purely doing a code prototype

to try things out, then use the scons --no-unit-test command.

Work with the periodic callbacks to add your code

Design small code modules, and set up their expectation in unit-test code

The first-hand account of what happens when you miss the deadline of a periodic callback

// periodic_callbacks.c

// Include these files for RTOS task delay function

#include "FreeRTOS.h"

#include "task.h"

void periodic_callbacks__1Hz(uint32_t callback_count) {

 gpio__toggle(board_io__get_led0());

 // On the fifth function call to this function, sleep for 1000ms

 if (callback_count >= 5) {

 vTaskDelay(1000);

 }}

What did you learn?

This is definitely not an exhaustive tutorial about learning Git... Google would be better to reveal several

great tutorials about Git. What we focus on instead is a simplistic workflow about publishing a "Pull

Request" in Git.

Gitlab provides services that allow hosting your project on a remote repository and provides additional

features that help in continuous integration and deployment. Such as code sharing, code review, and

bug tracking.

For better or worse, we have decided to use Gitlab.com for the repository. You are also required to use

this Gitlab repository because that keeps the entire class aligned to a single server type and reduces

fragmentation while increasing the efficiency of the teacher and the ISA team.

For this part, establish your Gitlab.com account.

1. Go to GitLab.com and create an account.
2. Sign in to GitLab.

In addition, also install Git to your machine such that you can successfully execute the git Commands

from a terminal.

1. Download git from GIT_Install and install git.
2. Check git is installed on your system by using the "git --version" command in the terminal.

When you fork a project, you essentially create a copy of the original SJ2-C repository. This will be your

LAB: Git

What is Gitlab?

Part 0: Setup Gitlab account

How to set up a Gitlab account?

Part 1: Fork SJ2-C Project

https://gitlab.com/users/sign_in?__cf_chl_jschl_tk__=ed8fca8914c93977c8f260cef7139a3052fe0a59-1612903080-0-AXaW60uR5_sMWPEn3MulZtSx4B-qNsLmFRIHHNnrE-T0fv1qlm_e-cTan9w6Ej-qYHAkF5kWNBBHMGkHw0XegKrOSBMdiFwU_hVWL3oyNfPqVuebPkM80Qa_jmUryWuRXa-uUaiKQKz5Ncgsb5JDVzB_5mSAyEheI58t8hJRL_K7aa_L_S9iePn9-1Kpki83EKxq4fxzKdrTqKzF55k0EgqO-swioKIzPudgEs7D8i2yOe0SFCridRlHb7-i7jMkjvYVm7CBEsbUkP0mwNgkEIsAkgWVo8s_6wHwDRDxosInP3Tpl7x0xUGrFtoRY6M440FXb2MJ9UqJtQIajmY5oTMlNbEVmb0-UUFzYhsOoA5bquWTCa1AvKsP2EdwvtypMQ
https://gitlab.com/users/sign_in?__cf_chl_jschl_tk__=ed8fca8914c93977c8f260cef7139a3052fe0a59-1612903080-0-AXaW60uR5_sMWPEn3MulZtSx4B-qNsLmFRIHHNnrE-T0fv1qlm_e-cTan9w6Ej-qYHAkF5kWNBBHMGkHw0XegKrOSBMdiFwU_hVWL3oyNfPqVuebPkM80Qa_jmUryWuRXa-uUaiKQKz5Ncgsb5JDVzB_5mSAyEheI58t8hJRL_K7aa_L_S9iePn9-1Kpki83EKxq4fxzKdrTqKzF55k0EgqO-swioKIzPudgEs7D8i2yOe0SFCridRlHb7-i7jMkjvYVm7CBEsbUkP0mwNgkEIsAkgWVo8s_6wHwDRDxosInP3Tpl7x0xUGrFtoRY6M440FXb2MJ9UqJtQIajmY5oTMlNbEVmb0-UUFzYhsOoA5bquWTCa1AvKsP2EdwvtypMQ
https://git-scm.com/

version of the forked project, and you can use this throughout the semester for your private workspace

to do the lab assignments.

Browse to the SJtwo-c repository, and click on the Fork button.

After you fork the repository, make sure you set the permissions to "public". Do this by going into your

newly forked repository settings, and look for the "Visibility" setting.

1. Go to your newly forked project’s Settings
2. Change Visibility Level to Public

INIT

The first thing you want to do before you init is to add a project on the Git website to see the “Setting up

a new Git repository” section. If you have a folder with code that is not on Git, and you wish to put it on

the Git server, then you need to initialize Git into your folder. This creates a .git folder, and the current

directory is now a Git repository. The .git folder contains Git information such as branches. Initializing

your folder is local to your computer and does not yet upload onto the server.

CLONE

If you see a repository that you want to work on, you can “clone” it into a directory and start working on

How to change project visibility

Part 2: Basic Git Commands

To add your project to the git

Initialize current directory

$ git init

Initialize selected directory$ git init <directory>

https://gitlab.com/sjtwo-c-dev/sjtwo-c
http://books.socialledge.com/uploads/images/gallery/2020-01-Jan/fork.png

it. Cloning it will download the entire repository as well as a .git folder. Note that the clone is different

from “pull”. This will be explained later. Just use this command once at the beginning of the project

unless you want multiple folders.

The process of checking-in new code to your forked repository will involve "Branch Workflow". There

are actually a number of ways to contribute code to your repository, and the branch workflow is just one

of them that we will choose to use.

We are not going to discuss that in detail because it is already captured well in this awesome article.

We will summarize the process that you will use to do this. The $ indicates the commands you should

try.

Downloads entire repository to current directory

$ git clone <repo>

Downloads entire repository to selected directory$ git clone <repo> <directory>

The difference between forking and cloning a GIT project means when you fork a repository,

you create a copy of the original repository (upstream repository) but the repository remains on

your personal Gitlab account. Whereas, when you clone a repository, the repository is copied

onto your local machine with the help of Git.

?

Part 3: Branch Workflow

See what is going on

$ git status

On branch master

Create a new "branch" of code to work on

You can use any name, and feature/foo is just a convention

$ git checkout -b feature/gpio_blinky_in_periodics

Switched to a new branch 'feature/gpio_blinky_in_periodics'

Add or modify a file we want

$ touch file.txt

Tell git to add it to be committed

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

The typical name of a request to merge code is called a "Pull Request" or a "Merge Request". This is

the chance to review the code and merge the code. In the end, Part 3 you have a branch that only

exists on your computer. In case you lose your computer or your storage device dies, then you will lose

any work even though you have "committed" a change.

The distinction is that a commit only commits to your storage device, but does not send the data or the

branch to the Git server. To actually push the code to the Git server, simply type git push origin head .

$ git add file.txt

Check what is going on

$ git status

On branch feature/gpio_blinky_in_periodics

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

new file: file.txt

Commit the change with a message

$ git commit -m "added file.txt"

[feature/gpio_blinky_in_periodics 5f76839] added file.txt

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 file.txt

Check what is going on

$ git status

On branch feature/gpio_blinky_in_periodicsnothing to commit, working tree clean

Part 4: Merge Request (MR)

$ git push origin head

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 12 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 262 bytes | 262.00 KiB/s, done.

Total 2 (delta 1), reused 0 (delta 0)

This command will generate a URL for you, so copy and paste this URL to your web browser. For

example, the URL above is:

https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/new?merge_request%5Bsource_branch%5D=feature%2Fgpio_blinky_in_periodics

This will lead you to generate your "Merge Request" . At the end of the web page that loads, click on

"Submit Merge Request". At this point, you can view the changes, get feedback from others, and if the

code looks good, you can then merge the code. But wait ... rarely will you be able to merge code

without iterating and revising it, and that is what Part 5 is for.

Granted that you have an MR already out there, and you have got feedback from others, this section

will teach you how to revise or amend your code.

remote:

remote: To create a merge request for feature/gpio_blinky_in_periodics, visit:

remote: https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/new?merge_request%5Bsource_branch%5D=feature%2Fgpio_blinky_in_periodics

remote:

To gitlab.com:sjtwo-c-dev/sjtwo-c.git

 * [new branch] head -> feature/gpio_blinky_in_periodics

Part 5: Revise an MR

After the git push command, your MR will be updated on the browser. This way, you can continue to

revise your MR per the suggestions of other people. When you are satisfied with your MR, you can

seek approval and officially hit the Merge button on the Gitlab.com webpage.

After you have merged your MR, it is time to go back to the master branch and grab the latest changes.

Other users may have merged their code also, so pulling the latest master branch is going to get you

the latest and greatest code.

There is of course A LOT more to Git, but once you master the basics, you can then Google your way

through the rest of the world you will face such as:

Modify any code

In this case, we will dump 'hello' to our previously committed file: file.txt

$ echo "hello" >> file.txt

Check what is going on

$ git status

On branch feature/gpio_blinky_in_periodics

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

	modified: file.txt

Add the file we want to re-commit (another commit on top of previous)

$ git add file.txt

$ git commit -m "Added hello to file.txt"

Update the remote branch and the Merge Request$ git push origin head

Part 6: Final Step

Go to the master branch

$ git checkout master

Pull the latest master$ git pull origin master

Part 7: Going beyond . . .

Handling merge conflicts

Check out other people's branches

Rebase on the latest master branch.

The process of checking-in new code to your forked repository will involve "Branch Workflow" as

explained in PART 3. The following steps will help you to add new code/files for each of your lab

submissions.

Goto cmd OR terminal OR git bash. CD to the location of the cloned project(cd sjtwo-

c/projects/lpc40xx_freertos/l5_application) and run the following commands.

$ git status

Assume that you are on your feature branch

$ git checkout master

$ git pull origin master

Go back to the previous branch you were working with (feature)

$ git checkout -

Apply our commits to the latest master$ git rebase master

Part 8: Steps to create MR for Lab Submissions

 # You can use any name, it's better to use lab with the number as a branch name.

 # such as lab1,lab2

$ git checkout -b lab1

Switched to a new branch 'lab1'

Add or modify files as per the given lab assignment

for example lab 1 requires two files

$ touch lab_multitasks.c

$ touch lab_multitasks.h

Check what is going on

$ git status

On branch lab1

Untracked files:

 (use "git add <file>..." to include in what will be committed)

	lab_multitask.c

	lab_multitask.h

Tell git to add it to be committed

$ git add .

Check what is going on

$ git status

On branch lab1

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

	new file: lab_multitask.c

	new file: lab_multitask.h

Commit the change with a message

$ git commit -m "added lab1 files"

[lab1 e88f23d] added lab1 files

 2 files changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 projects/lpc40xx_freertos/l5_application/lab_multitask.c

 create mode 100644 projects/lpc40xx_freertos/l5_application/lab_multitask.h

Check what is going on

$ git status

On branch lab1

nothing to commit, working tree clean

Update the remote branch and the Merge Request

$ git push origin head

Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Delta compression using up to 12 threads

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 262 bytes | 262.00 KiB/s, done.

Total 2 (delta 1), reused 0 (delta 0)

remote:

remote: To create a merge request for lab1, visit:

remote: https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/new?merge_request%5Bsource_branch%5D=lab1

remote:

To gitlab.com:sjtwo-c-dev/sjtwo-c.git

 * [new branch] head -> lab1

Create a merge request for each lab and use the merge request URL for your lab submissions.

Please follow PART 4 to generate and submit "Merge Request" on Git.

After submitting a merge request you will receive a new URL on the browser. Use that URL for

your canvas submission.

Follow the same steps for creating the next lab branch(such as lab2), add new files to the lab2

branch(such as lab_gpio.c and lab_gpio.h), and create a merge request for the submission after

completing your GPIO driver.

for appropriate to; intended for More (Definitions, Synonyms, Translation)

Note make mention of More (Definitions, Synonyms, Translation)

 # Assume that you are on your lab branch

 # To comeback to master branch$ git checkout master

Gitlab provides services that allow hosting your project on a remote repository and provides additional

features that help in continuous integration and deployment. Such as code sharing, code review, and

bug tracking.

In Git there is the notion of a "Master" code base which contains the work of all contributing members in

a project.

There are two basic workflows that you may follow when using Git for version control.

1. Committing directly to the "Master" branch.
2. Creating branches from the "Master" branch and merging them back in when ready.

This section of the guide will walk you through these two workflow strategies.

Working directly off the "Master" branch can be advantageous to smaller groups who rarely (if ever)

work on the same portions of the code at a time.

Git Basics
What is Gitlab?

GIT Workflow

1. Working off the "Master" Branch

The basic workflow for this method is as follows:

1. "Pull" from the Master branch to ensure the local copy contains the latest version of the code.
2. Make necessary changes to the code in your local repository.
3. Commit your changes.
4. "Push" your changes to the remote repository.

In git commands this would look like this:

Make sure you are on master branch

http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-Page-4-(1).png
http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-Page-5.png
http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-Page-5.png

The second workflow takes advantage of the branching system in git. To protect your Master branch

from code that may break your build or introduce bugs we can create what is called a "feature branch."

These branches contain your development code and isolate it from the main code until you are ready to

merge them together.

The workflow is as follows:

1. Do a "git fetch" to obtain the latest version of your source branch.
2. Check out a new branch.
3. Perform your work on your new branch (be sure to make regular commits to avoid losing any of

your work.)
4. Merge the two branches.

git checkout master

Make sure you have the latest code

git pull origin master

Make your changes to your code

Add files you may have changed to your commit

git add <file1> <file2> ...

Add all untracked files to your commit

git add .

Commit your changes

git commit -m "<commit message here>"

Push your changesgit push origin HEAD

2. Working with feature branches

Here is the general workflow in git commands:

When you are ready to merge your branch back into the source branch there are two routes you may

take:

1. Merge your feature branch directly into the source branch.
2. Open a pull request for peer code review prior to merging your branch.

To merge your feature branch into the source uses the following workflow:

1. Check out the source branch.
2. Ensure your source branch contains the most updated code from the remote repo.

Checkout your "source" branch (the branch you want to base your code off of)

git checkout master

Obtain the latest code

git fetch origin

Create a new branch from your source branch

git checkout -b <new branch name>

Make your code changes and commit them regularly

git add <file1> <file2> ...

git commit -m "<commit message>"

Push your changes to your FEATURE branch

GIT server knows this branch after the push and other people can also check-out your branch

But this branch is not yet merged to the master branchgit push origin HEAD

http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-Page-6.png

3. Merge your feature branch into the source branch.
4. Push the newly merged source branch back to the remote repo.

The git commands for this workflow looks like this:

A merge conflict is an event that takes place when Git is unable to automatically resolve differences in

code between two commits. Git can merge the changes automatically only if the commits are on

different lines or branches.

Checkout the source branch that you want to merge your branch into (assuming your source was 'master')

git checkout master

Ensure your source branch is up-to-date

git pull origin master

Merge your feature branch INTO the source branch

git merge <feature branch>

At this point, you might need to resolve merge conflicts

Push your changes to the remote repogit push origin master

3. Merge Conflicts
When working in a team it will be inevitable that the same file will be touched by multiple

developers. If multiple make changes in the same part of the file, then it will result in a merge

conflict when attempting to merge the files together. These conflicts can be resolved in your IDE

directly or in any text editor.

?

What is Git Merge Conflict?

http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-Page-7-(2).png

Let’s assume there are two developers: Two developers pull the same code file from the remote

repository and try to make various amendments to the same file. After making the changes, Developer

1 pushes the file back to the remote repository from his local repository. Now, when Developer 2 tries to

push that file after making the changes from his end, he is unable to do so, as the file has already been

changed in the remote repository.

To prevent such conflicts, developers work in separate isolated branches. The Git merge command

combines separate branches and resolves any conflicting edits.

The git commands for this workflow looks like this:

The status command will provide you with the current status of your branch. It provides information

such as files changed or whether or not you are up-to-date with the remote branch.

$ git status

On branch merge_branch

Your branch is up to date with 'origin/merge_branch'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: merge_demo.c

no changes added to commit (use "git add" and/or "git commit -a")

Make your code changes and commit them

$ git add .

$ git commit -m "chnages in the c file"

[merge_branch d2d4473] chnages in the c file

 1 file changed, 1 insertion(+), 1 deletion(-)

Push your changes to the remote repo

$ git push

To https://gitlab.com/Jain_Vidushi/sjtwo-c.git

 ! [rejected] merge_branch -> merge_branch (fetch first)

error: failed to push some refs to 'https://gitlab.com/Jain_Vidushi/sjtwo-c.git'

hint: Updates were rejected because the remote contains work that you do

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., 'git pull ...') before pushing again.

Ran into the MERGE CONFLICT

Ensure your source branch is up-to-date

$ git pull

remote: Enumerating objects: 2, done.

remote: Counting objects: 100% (2/2), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 2 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (2/2), done.

From https://gitlab.com/Jain_Vidushi/sjtwo-c

 0d0ac2a..139b80d merge_branch -> origin/merge_branch

Auto-merging merge_demo.c

CONFLICT (content): Merge conflict in merge_demo.c

Automatic merge failed; fix conflicts and then commit the result.

Users-MBP-2:sjtwo-c Macbook$ git status

On branch merge_branch

Your branch and 'origin/merge_branch' have diverged,

and have 1 and 1 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

You have unmerged paths.

 (fix conflicts and run "git commit")

 (use "git merge --abort" to abort the merge)

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: merge_demo.c

no changes added to commit (use "git add" and/or "git commit -a")

At this point, you might need to resolve merge conflicts on your local machine

Make your code changes as per the conflict and commit them again

$ git add .

$ git commit -m "conflict resolved"

[merge_branch 2f261aa] conflict resolved

Push your changes to the remote repo

$ git push

Counting objects: 4, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 537 bytes | 537.00 KiB/s, done.

Total 4 (delta 1), reused 0 (delta 0)

remote:

Synonyms for "fetch" fetch the action of fetching More (Definitions, Synonyms, Translation)

remote: View merge request for merge_branch:

remote: https://gitlab.com/sjtwo-c-dev/sjtwo-c/-/merge_requests/157

remote:

To https://gitlab.com/Jain_Vidushi/sjtwo-c.git

 139b80d..2f261aa merge_branch -> merge_branch

