LAB: GPS and UART

Objective

Use existing drivers to communicate over UART (GPS module will utilize it).
® For this assignment, refer uart3 init.h api's available here:

sjtwo-c/projects/1lpc40xx freertos/14 io/uart3 init.h
Design a line buffer library that may be useful with the GPS module
Reinforce how to design software structured around the periodic callbacks

Background

A GPS typically operates by sending "NMEA" strings over UART in plain ASCII text that is readable by

humans. Here is a good reference article. What you will do is use one of the SJ2 boards to send a "fake" GPS
string, and have another board parse the input and extract latitude and longitude.

. sJ2 sJ2
This board acts
like a GPS and Board Uart Uart Board
will send
"MMEA" strings @ T Rx
over UART
GPS

Overall Software Design

What we are designing is a GPS code module that exposes a simple API for the periodic scheduler to run its
logic, and another API for a user to query GPS coordinates.

// @file gps.h

#pragma once

// Notice the simplicity of this module. This module is easily mockable and provides a very

// simple API interface UART driver and line buffer module will be hidden inside of gps.c

void gps_ run once(void);float gps get latitude(void);

http://aprs.gids.nl/nmea/#gsa
http://books.socialledge.com/uploads/images/gallery/2020-02-Feb/sj2-gps(1).png

This module internally (at its gps.c file) has other module dependencies, but it does not introduce these
dependencies to the user and in fact, keeps them hidden. This is useful because any code module that

#includes the GPS module should not need to know or mock the UART or the line buffer code module.

Periodic

Scheduler User

Another code

module can "get"
latest coordinates

Runs the GPS
module logic

Uses UART to Stores
"get" the arriving bytes
data to line buffer
UART Line Buffer

// @file gps.c
#include "gps.h"

// Our 'private' modules: We hide and abstract away these details from the user
// Whoever #includes "Mockgps.h" will not need to deal with these because

// these are included in this source file rather than the header file

#include "uart.h"

#include "line buffer.h"

void gps__ run_once(void) {

1) ocok

Lab

Part O: Familiarize with MCU Pins

The LPC (SJ2) microcontroller has dedicated pins that can be used for serial communication such as UART.
The uart3 init() or uart init() code did not explicitly choose the UART pins to initialize the RX/TX. The
first thing to do is identify the pins that you will be using (or compromising) for UART communication.

http://books.socialledge.com/uploads/images/gallery/2020-02-Feb/software_design.png

Please reference:

® This article for SJ2 board 1/0 pins

After selecting the UART pins from the article, you can use gpio construct with function() API for
initializing UART pins:

// UART1 is on P0.15, P0.16
gpio construct with function(GPIO PORT 0, 15, GPIO FUNCTION 1); // P0.15 - Uart-1 Tx
gpio_ construct with function(GPIO_ PORT O, 16, GPIO FUNCTION 1); // P0.16 - Uart-1 Rx
// UART2 is on P0.10, P0.11
gpio_ construct with function(GPIO_PORT 0, 10, GPIO FUNCTION 1); // P0.10 - Uart-2 Tx
gpio construct with function(GPIO PORT O, 11, GPIO FUNCTION 1); // P0.11 - Uart-2 RX
// UART3 is on P4.28, P4.29
gpio construct with function(GPIO PORT 4, 28, GPIO FUNCTION 2); // P4.28 - Uart-3 Tx
gpio_ construct with function(GPIO_ PORT 4, 29, GPIO FUNCTION 2); // P4.29 - Uart-3 Rx

At this point, put your SJ2 board away, and perform test-driven development of the code modules and we will
test it on the board at the last step of this lab. You can use the following sample code in conjunction by shorting
the UART3 RX/TX pins to ensure that you can send and receive data correctly.

static char output data = 'a‘';
void periodic_callbacks 1Hz(uint32 t callback count) {
uart put(UART 3, output data, 0);

char input = 0;
if (uart get(UART 3, &input, 2)) {

printf("Tx %c vs. Rx %c\n", output data, input);

++output data;
if (output data > 'z') {

output data = 'a’';

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/sj2-board

Part 1. Create line buffer code module

In this part of the lab, you will create a new code module that will remove data from the UART driver, and buffer
it inside of this code module. Collaboration is encouraged so please pair the program and do not work on
this code module alone. Notice the minimal API because according to our tests below, we simply will not
need anything further than this.

#pragma once
#include <stdint.h>
#include <stdbool.h>
// Do not access this struct directly in your production code or in unit tests
// These are "internal" details of the code module
typedef struct {
void * memory;
size t max_size;
size t write index;
} line buffer_s;
/**
* Initialize *line buffer s with the user provided buffer space and size
* Use should initialize the buffer with whatever memory they need
* @code
* char memory[256];
* line buffer s line buffer = { };
* line buffer init(&line buffer, memory, sizeof(memory));
* @endcode
*/
void line buffer init(line buffer s *buffer, void *memory, size t size);
// Adds a byte to the buffer, and returns true if the buffer had enough space to add the byte
bool line buffer add byte(line buffer s *buffer, char byte);
/**
* If the line buffer has a complete line, it will remove that contents and save it to "char * line"
* Note that the buffer may have multiple lines already in the buffer, so it will require multiple
* calls to this function to empty out those lines
*
* The one corner case is that if the buffer is FULL, and there is no '\n' character, then you should

* empty out the line to the user buffer even though there is no newline character

* @param line max_size This is the max size of 'char * line' memory pointer

*/bool line buffer remove line(line buffer s *buffer, char * line, size t line max size);

Here are the unit-tests that are already designed for you. You should use this to ensure that the line buffer
code module is working correctly. These unit-tests are pre-written because we wanted to ensure that your line
buffer module is functional even in the corner cases; feel free to also add more tests to these minimal set of
tests.

#include "unity.h"
// Include the source we wish to test
#include "line buffer.h"
// Most unit-tests focus on nominal cases, but you should also have
// tests that use larger line buffers etc.
static line buffer_ s line buffer;
static char memory[8];
// This method re-initializes the line buffer for the rest of the tests
void setUp(void) { line buffer init(&line buffer, memory, sizeof(memory)); }
void tearDown(void) {}
static void add bytes to buffer(const char *string) {
for (size t index = 0; index < strlen(string); index++) {

TEST ASSERT TRUE(line buffer add byte(&line buffer, string[index]);

}
void test line buffer nominal case(void) {
add bytes to buffer("abc\n");
char line[8];
TEST ASSERT TRUE(line buffer remove line(&line buffer, line, sizeof(line)));
TEST ASSERT EQUAL STRING(line, "abc");
}
void test incomplete line(void) {
add bytes to buffer("xy");
char line[8];
// Line buffer doesn't contain entire line yet (defined by \n)

TEST ASSERT FALSE(line buffer remove line(&line buffer, line, sizeof(line)));

// Line buffer receives \n

line buffer add byte(&line buffer, '\n');

TEST ASSERT TRUE(line buffer remove line(&line buffer, line, sizeof(line)));
TEST ASSERT EQUAL STRING(line, "xy");
}
void test line buffer slash r slash n case(void) {
add bytes to buffer("ab\r\n");
char 1line[8];
TEST ASSERT TRUE(line buffer remove line(&line buffer, line, sizeof(line)));
TEST ASSERT EQUAL STRING(line, "ab\r");
}
// Line buffer should be able to add multiple lines and we should be able to remove them one at a time
void test line buffer multiple lines(void) {
add _bytes to buffer("ab\ncd\n");
char line[8];
TEST ASSERT TRUE(line buffer remove line(&line buffer, line, sizeof(line)));
TEST ASSERT EQUAL STRING(line, "ab");

TEST ASSERT TRUE(line buffer remove line(&line buffer, line, sizeof(line)));
TEST ASSERT EQUAL_STRING(line, "cd");
}
void test line buffer overflow case(void) {
// Add chars until full capacity
for (size t i = 0; i < sizeof(memory); i++) {
TEST _ASSERT TRUE(line buffer add byte(&line buffer, 'a' + i));
}
// Buffer should be full now
TEST ASSERT FALSE(line buffer add byte(&line buffer, 'b'));
// Retreive truncated output (without the newline char)
// Do not modify this test; instead, change your API to make this test pass
// Note that line buffer was full with "abcdefgh" but we should only
// retreive "abcdefg" because we need to write NULL char to line[8]
char line[8] = { 0 };
TEST ASSERT TRUE(line buffer remove line(&line buffer, line, sizeof(line)));
TEST ASSERT EQUAL STRING(line, "abcdefg");}

Part 2: Create gps code module

The GPS code module will glue the UART driver, and the line buffer module and this will be the single
module that needs to be integrated with the periodic callbacks.

The starter code for gps.h and gps.c is given below, but there are some missing pieces. This is not to spoil
your fun, but to provide a guideline of how the GPS code module should be structured. You need to build the

unit-tests for the GPS module: test gps.c

// gps.h
#pragma once
// Note:
// South means negative latittude
// West means negative longitutde
typedef struct {
float latitude;
float longitude;
} gps_coordinates t;
void gps init(void);
void gps_ run_once(void);

gps_coordinates t gps_get coordinates(void);

// gps.c

#include "gps.h"

// GPS module dependency

#include "uart.h"

#include "line buffer.h"

#include "clock.h" // needed for UART initialization

// Change this according to which UART you plan to use

static const uart e gps uart = UART 2;

// Space for the line buffer, and the line buffer data structure instance
static char line buffer[200];

static line buffer s line;

static gps coordinates t parsed coordinates;

static void gps transfer data from uart driver to line buffer(void) {

char byte;

const uint32 t zero timeout = 0;

while (uart get(gps uart, &byte, zero timeout)) {
line buffer add byte(&line, byte);

}
static void gps_ parse coordinates from line(void) {
char gps line[200];
if (line buffer remove line(&line, gps line, sizeof(gps line))) {
// TODO: Parse the line to store GPS coordinates etc.

// TODO: parse and store to parsed coordinates

}
void gps_ init(void) {
line buffer init(&line, line buffer, sizeof(line buffer));

uart init(gps uart, clock get peripheral clock hz(), 38400);

// RX queue should be sized such that can buffer data in UART driver until gps__ run once() is called
// Note: Assuming 38400bps, we can get 4 chars per ms, and 40 chars per 10ms (100Hz)

QueueHandle t rxq _handle = xQueueCreate(50, sizeof(char));

QueueHandle t txqg handle XQueueCreate(8, sizeof(char)); // We don't send anything to the GPS
uart_enable queues(gps uart, rxq_handle, txq handle);

}

void gps__ run_once(void) {
gps__transfer data from uart driver to line buffer();
gps__parse coordinates from line();

}

gps_coordinates t gps get coordinates(void) {

// TODO return parsed coordinates}

// @file test gps.c
#include "unity.h"

// Mocks

#include "Mockclock.h"

#include "Mockuart.h"

#include "Mockqueue.h"

// We can choose to use real implementation (not Mock) for line buffer.h

// because this is a relatively trivial module

#include "line buffer.h"

// Include the source we wish to test

#include "gps.h"

void setUp(void) {}

void tearDown(void) {}

void test init(void) {}

void test GPGLL line is ignored(void) {}

void test GPGGA coordinates are parsed(void) {
const char *uart driver returned data = "$GPGGA,hhmmss.ss,111l1.11,a,yyyyy.yy,a,X,Xx,X.x,x.x,M,x.x,M,.
for(size t index = 0; index <= strlen(uart driver returned data); index++) {

const char the char to return = uart driver returned data[index];

const bool last char = (index < strlen(uart driver returned data));
uart get ExpectAndReturn(UART 3, ptr, 0, last char);

// TODO: Research on ReturnThruPtr() to make it return the char 'the char to return’

gps__run_once();

// TODO: Test gps_get coordinates():

}
void test GPGGA incomplete line(void) {}

void test more that you think you need(void) {}

Part 3: Integrate and test

Once you have your GPS and line buffer code module fully tested, this part might be the simplest part because
your code may simply work the first time (which usually never happens). This is of course only possible
because you have already unit-tested your code.

Also note that when you integrate the GPS code modules to periodic callbacks.c , you will need to also
update the unit-tests for test periodic callbacks.c by adding the mock of gps.c

void periodic_callbacks initialize(void) {
// This method is invoked once when the periodic tasks are created
gps_ init();
}
/**
* Depending on the size of your UART queues, you can probably
* run your GPS logic either in 10Hz or 100Hz
*/
void periodic_callbacks 100Hz(uint32 t callback count) {
gpio toggle(board io get led2());

gps__run_once();}

One assumption is that the second SJ2 board is already interfaced to your primary SJ2 board and is sending
fake GPS data (see the sample code below). You can alternatively loopback your own board's UART pins and
send GPS string data while simultaneously receive your own data back to test the implementation.

// @file: fake gps.c
#include "fake gps.h" // TODO: You need to create this module, unit-tests for this are optional
#include "uart.h"

#include "uart printf.h"

#include "clock.h" // needed for UART initialization
// Change this according to which UART you plan to use
static uart e gps uart = UART 1;

void fake gps init(void) {

uart init(gps_uart, clock get peripheral clock hz(), 38400);

QueueHandle t rxq_handle = xQueueCreate(4, sizeof(char)); // Nothing to receive

QueueHandle t txqg handle

xQueueCreate (100, sizeof(char)); // We send a lot of data
uart enable queues(gps uart, rxgq handle, txq handle);
}
/// TODO: You may want to be somewhat random about the coordinates that you send here
void fake gps_ run_once(void) {
static float longitude = 0;
uart printf(gps uart, "$GPGGA,230612.015,%4.4f,N,12102.4634,W,0,04,5.7,508.3,M,,,,0000*13\r\n"

longitude += 1.15; // random incrementing value

, lon

Advanced Hints:

1. You can use queue module you built in the previous lab inside of your line buffer.h module
e This means, that enqueue and dequeue logic would not have to be re-invented

2. You can choose to decouple the GPS module from the UART

e The advantage would be to de-couple GPS code module from UART

e This would provide greater flexibility while unit-testing

e The glue logic of UART and GPS can occur at another code module. This can be tested separately
and it would be easy to test because this module's job is simply to read data from UART and pass it on

tothe gps run periodic() function

// GPS API modification
// run_periodic() can be designed to not read data over a concrete UART API
// Instead, we can choose to receive accumulated data as a parameter
void gps run periodic(const char *accumulated data);
// At a different code module, you can "glue" GPS and UART
void gps uart glue run _once(void) {
char accumulated data[200] = { O };
get accumulated data from uart(accumulated data, sizeof(accumulated data));

gps__run periodic(accumulated data);

Revision #45
Created 4 years ago by Preet Kang
Updated 5 months ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

