
The objective of this assignment is:

Set up your development environment
Learn how to run unit-tests
Trial how to input your code to the Periodic Scheduler

For CmpE243, we will not be focusing on typical RTOS tasks like CmpE244. The reason is that we wish to use
an approach that is typically seen in the Automotive industry, which is to design the logic of your autonomous
RC car based on software instructions that occur periodically and consistently.

Set up your development environment for this portion of the lab. Follow through and read all of the README

files carefully that are linked here. Make sure you are able to run the unit tests, and also compile a hex file that
you can load onto your board.

You can watch the following video to get started:

Youtube: Compile project

Youtube: Scons build system

For this portion, edit the code such that it will start to blink four LEDs driven by the periodic scheduler. In

particular, read the documentation of the main.c file, and enable the code for the periodic scheduler.

Study the overall structure of main.c , and then switch a #if (1) to #if (0) such that it will disable two
blinky tasks, and instead run the periodic scheduler. The name "periodic scheduler" may sound fancier than

what it actually is, but this is just a trivial piece of code that invokes function at periodic_callbacks.c file.

LAB: Periodic Scheduler

Part 0: Build Environment

Part 1: Blink LEDs

// main.c

static void create_blinky_tasks(void) {

 /**

https://gitlab.com/sjtwo-c-dev/sjtwo-c
https://www.youtube.com/watch?v=--AL0VKzvU8&t=141s
https://www.youtube.com/watch?v=EbiCummaIM0&t=31s

There are a few things to note for future reference:

The stack size is chosen with a same value, and depending on the complexity of the functions you invoke at

the periodic_callbacks.c file, you may have to increase this memory size. Also note that there are five
tasks total that run the periodic callbacks, so if you input 2K, then you will end up using 10K for the memory
footprint. Recommended size is 2-4K.

The logic at periodic_callbacks.c the file should be function calls into your other code modules. This way,
unit tests of this file will remain simple. You do not want to input branch statements here because this would
make your code less modular, and difficult to unit-test.

Insert additional code to one of the periodic callbacks, and then observe its operation. In the example below,
we are going to demonstrate the right way to build a module that reads a switch and lights up an LED.

DO NOT do the following because what you have done is that cluttered all the things that need to occur

periodically. If we go down this path, you will end up creating a giant periodic_callbacks.c file that will be
difficult to test, and your code will not be modular or broken down into these pieces. Unit-testing code will also
be difficult because now you have to not only test the switch and LED logic but also test more unrelated

 * Use '#if (1)' if you wish to observe how two tasks can blink LEDs

 * Use '#if (0)' if you wish to use the 'periodic_scheduler.h' that will spawn 4 periodic tasks, one for each LED

 */

#if (0)

 // ...

#else

 periodic_scheduler__initialize();

 UNUSED(blink_task);

#endif

}

// periodic_scheduler.c

void periodic_scheduler__initialize(void) {

 /**

 ...

 */

 static StackType_t hz1_stack[4096 / sizeof(StackType_t)];

 static StackType_t hz10_stack[4096 / sizeof(StackType_t)];

 static StackType_t hz100_stack[4096 / sizeof(StackType_t)];

 /**

 ...

 */}

Part 2: Switch and LED code module

subsequent code.

Instead, follow good code design, and create "modules" for your code. Using this approach, you have

refactored your switch and LED logic to a new code module: switch_led_logic.h . You can test this code

module separately and then testing the periodic_callbacks.c a code module is also straightforward since you
only have to set up a couple of "expect" function calls.

Of course, you are not done yet, and you also have to modify test_periodic_callbacks.c

// periodic_callbacks.c -- BAD example

static gpio_s my_led;

static gpio_s my_switch;

void periodic_callbacks__initialize(void) {

 my_led = gpio__construct_as_output(GPIO__PORT_2, 0);

 my_switch = gpio__construct_as_input(GPIO__PORT_2, 1);

}

void periodic_callbacks__1Hz(uint32_t callback_count) {

 gpio__toggle(board_io__get_led0());

 if (gpio__get(my_switch)) {

 gpio__set(my_led);

 } else {

 gpio__reset(my_led);

 }}

// periodic_callbacks.c -- Good example

#include "switch_led_logic.h"

void periodic_callbacks__initialize(void) {

 switch_led_logic__initialize();

}

void periodic_callbacks__1Hz(uint32_t callback_count) {

 gpio__toggle(board_io__get_led0());

 switch_led_logic__run_once();}

#include "Mockboard_io.h"

#include "Mockgpio.h"

// Add mock of your new code module

Deliberately overrun one of the periodic tasks and observe that your board will reboot. Since this will be sort of
a "throw-away" code, you can opt to skip the unit-tests. Here is a sample code that will deliberately reboot the
processor because of the missed deadline of the 1Hz function.

It is strongly advised NOT to skip the unit-tests in general. But if you are purely doing a code prototype to try

things out, then use the scons --no-unit-test command.

#include "Mockswitch_led_logic.h"

#include "periodic_callbacks.h"

// Add expect during the periodic_callbacks__initialize() function

void test__periodic_callbacks__initialize(void) {

 switch_led_logic__initialize_Expect();

 periodic_callbacks__initialize();

}

void test__periodic_callbacks__1Hz(void) {

 gpio_s gpio = {};

 board_io__get_led0_ExpectAndReturn(gpio);

 gpio__toggle_Expect(gpio);

 switch_led_logic__run_once_Expect();

 periodic_callbacks__1Hz(0);}

Part 3: Experiment with Task Overrun

// periodic_callbacks.c

// Include these files for RTOS task delay function

#include "FreeRTOS.h"

#include "task.h"

void periodic_callbacks__1Hz(uint32_t callback_count) {

 gpio__toggle(board_io__get_led0());

 // On the fifth function call to this function, sleep for 1000ms

 if (callback_count >= 5) {

 vTaskDelay(1000);

 }}

Work with the periodic callbacks to add your code
Design small code modules, and set up their expectation in unit-test code
The first-hand account of what happens when you miss the deadline of a periodic callback

What did you learn?

Revision #13

Created 4 years ago by Preet Kang

Updated 5 months ago by isa_team

http://books.socialledge.com/user/8
http://books.socialledge.com/user/9

