Lab: Queue

Part 1

Write the unit-tests first, and then the implementation for the following header file:

#pragma once
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
/* In this part, the queue memory is statically defined
* and fixed at compile time for 100 uint8s
*/
typedef struct {
uint8 t queue memory[100];
// TODO: Add more members as needed
} queue_s;
// This should initialize all members of queue s
void queue init(queue s *queue);
/// @returns false if the queue is full
bool queue push(queue s *queue, uint8 t push value);
/// @returns false if the queue was empty
bool queue pop(queue s *queue, uint8 t *pop value);

size t queue_ get item count(const queue_ s *queue);

Students often time create non optimal and incorrect implementation of a queue. Remember that a queue
means FIFO data structure, which means oldest item pushed should be the first one out of the pop operation.
Here are some unit tests that you are required to add to your test. This test will ensure that your
implementation is correct.

void test comprehensive(void) {

const size t max queue size = 100; // Change if needed



for (size t item = 0; item < max queue size; item++) {
const uint8 t item pushed = (uint8 t) item;
TEST ASSERT TRUE(queue push(&queue, item pushed));
TEST ASSERT EQUAL(item + 1, queue get item count(&queue));

// Should not be able to push anymore
TEST ASSERT FALSE(queue push(&queue, 123));
TEST ASSERT EQUAL(max queue size, queue get item count(&queue));

// Pull and verify the FIFO order

for (size t item = 0; item < max queue size; item++) {
uint8 t popped value = 0;
TEST ASSERT TRUE(queue pop(&queue, &popped value));
TEST ASSERT EQUAL((uint8 t)item, popped value);

}

// Test wrap-around case

const uint8 t pushed value = 123;

TEST ASSERT TRUE(queue push(&queue, pushed value));

uint8 t popped value = 0;

TEST ASSERT TRUE(queue pop(&queue, &popped value));

TEST ASSERT EQUAL (pushed value, popped value);

TEST_ASSERT_EQUAL (0, queue get item count(&queue));
TEST ASSERT FALSE(queue pop(&queue, &popped value));

Part 2

Write the unit-tests first, and then the implementation for the following header file. This is a slight variation of

Part 1 and it provides you with the static memory based programming pattern popular in Embedded Systems
where we deliberately avoid allocating memory on the heap.

#pragma once

#include <stdbool.h>



#include <stddef.h>
#include <stdint.h>

/* In this part, the queue memory is statically defined

* by the user and provided to you upon queue init()

*/

typedef struct {

uint8 t *static_memory for_queue;

size t static memory size in bytes;

// TODO: Add more members as needed

} queue s;
/* Initialize the queue with user provided static memory

* @param static _memory for queue This memory pointer should not go out of scope

*

* @code

& static uint8 t memory[128];

& queue_s queue;

& queue init(&queue, memory, sizeof(memory));

* @endcode

*/
void queue init(queue s *queue, void *static memory for queue, size t static memory size in bytes);
/// @returns false if the queue is full
bool queue push(queue s *queue, uint8 t push value);
/// @returns false if the queue was empty
/// Write the popped value to the user provided pointer pop value ptr
bool queue pop(queue s *queue, uint8 t *pop value ptr);

size t queue get item count(const queue s *queue);

Requirements

e Test thoroughly
o Do not hack internals of a module.
o This means that only operate using the APIs, and do not modify the data structure

© As an example, to test pop() , push elements using the API rather than hacking struct.write index++
e Create a thorough test like this one at the end of your basic tests:

o Push to the capacity of the queue

o Then pop all elements

o Finally push value of Ox1A and pop value of Ox1A

¢ Do not "shift" any elements in your pop() operation
o Keep track of read and write indexes separately



o It would be horrible pop operation that has to shift thousands of elements over by 1
e Pop test should explicitly test to make sure the popped value is what was pushed

© This means that the pop() API depends on the push() API to work

Advanced API Design

We can also experiment with an "iterator" based API design pattern in C which involves a function pointer and
callbacks. This is an optional section that does not need to be addressed in your lab.

// lab_queue.h:

typedef void (*queue callback f)(uint8 t item);
// API to iterate through each item in the queue
// Note that this would not pop any items

void queue iterate items(queue s *queue, queue callback f callback);

Implementation for the iterate APl would be something like the following:

void queue iterate items(queue s *queue, queue callback f callback) {
if (NULL !'= queue) {

size t index = queue->pop_index;

for (size t count = 0; count < queue get item count(queue); count++) {
callback(queue->queue memory[index]);
++index;
¥
1}

The unit-testing is where things get a little more interesting. Naive way of unit-testing would be:

static int callback count;
static void callback(uint8 t item) {
++callback count;
if (1 == callback count)
TEST_ASSERT_EQUAL(12, item);
if (2 == callback count)
TEST ASSERT EQUAL(34, item);
if (3 == callback count)



TEST ASSERT EQUAL (56, item);
printf("Item: %d\n", item);
}
void test queue iterate items(void) {
queue_ push(&queue, 12);
queue_ push(&queue, 34);
queue_ push(&queue, 56);

queue iterate items(&queue, &callback);}

More advanced method of unit-testing would be:

void test queue iterate items with stub v2(void) {
queue_ push(&queue, 12);
queue_ push(&queue, 34);
queue__push(&queue, 56);
queue_callback stub Expect(12);
queue callback stub Expect(34);
queue callback stub Expect(56);

queue iterate items(&queue, queue callback stub);

In order to get the queue callback stub Expect() framework, you need to create this file and then mock it at
your unit-test file. Note that this file is a header only file, and we merely need it to do

#include "Mockqueue callback.h" thatis provided below.

#pragma once

void queue callback stub(uint8 t lab243);

Revision #5
Created 1 year ago by Preet Kang
Updated 1 year ago by Preet Kang


http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

