LAB: Unit testing with mocks

This article is based on unit-testing article and code labs from:

® Sibros public unit-test wiki

For a conceptual overview, see Unit-Test Basics and Mocks.

Part 1

Let us practice unit-testing, with a little bit of TDD thrown into the mix.

steering.h : This is just a header file and we will Mock out this file and therefore you do not need to write this
file's implementation.

#pragma once

void steer left(void);void steer_ right(void);

steer processor.h : You will write the implementation of this file yourself at steer processor.c

#pragma once
#include <stdint.h>
#include "steering.h"
/**
* Assume that a threshold value is 50cm
* Objective is to invoke steer function if a sensor value is less than the threshold
*
* Example: If left sensor is 49cm, and right is 70cm, then we should call steer right()

*/void steer processor(uint32 t left sensor cm, uint32 t right sensor cm);

test steer processor.c You will write the test code, before you write the implementation of
steer_processor() function.

https://sibros.atlassian.net/wiki/spaces/SP/pages/101515515/Unit+Testing+for+C
http://books.socialledge.com/books/industrial-applications-with-can-bus/page/unit-test-basics-and-mocks

#include "unity.h"
#include "steer processor.h"
#include "Mocksteering.h"
void test steer processor move left(void) { }
void test steer processor move right(void) { }
void test steer processor both sensors less than threshold(void) { }
// Hint: If you do not setup an Expect()
// then this test will only pass none of the steer functions is called
void test steer processor both sensors more than threshold(void) {
}
// Do not modify this test case
// Modify your implementation of steer processor() to make it pass
// This tests corner case of both sensors below the threshold
void test steer processor(void) {
steer right Expect();
steer processor (10, 20);
steer left Expect();

steer processor (20, 10);

Do the following:

® Putthe steering.h in your source code

® Putthe steer processor.h inyour source code
® Putthe test steer processor.c inyour test code folder

® Write the implementation of test steer processor.c and run the tests to confirm failing tests

® Write the implementation of steer processor.c

Part 2

In this part, the objectives are:

® Practice StubWithCallback Or ReturnThruPtr
e Ignore particular arguments

message.h : This is just an interface, and we will Mock this out meaning that we will not write the code for
message read() API:

#pragma once

#include <stdbool.h>

typedef struct {
char data[8];

} message_ s;

bool message read(message s *message to read);

message processor.c : This code module processes messages arriving from message read() function call.

There is a lot of nested logic that is testing if the third message contains $ or # at the first byte. To get to this
level of the code, it is difficult because you would have to setup your test code to return two dummy messages,
and a third message with particular bytes.

To improve test-ability, you should refactor the } else { logic into a separate static function that you can
hit with your unit-tests directly. Please ask your instructor to demonstrate how to refactor code for improved
ability to test.

#include <stdbool.h>

#include <stddef.h>

#include <string.h>

#include "message processor.h"

/**

* This processes messages by calling message read() until:

& - There are no messages to process -- which happens when message read() returns false
& - At most 3 messages have been read
&/

bool message processor(void) {
bool symbol found = false;
message S message;
memset (&message, 0, sizeof(message));
const static size t max messages to process = 3;
for (size t message count = 0; message count < max messages to process; message count++) {
if (!message read(&message)) {
break;
} else {
if (message.data[0] == '$') {
symbol found = true;

} else {

// Symbol not found

}

return symbol found;}

test message processor.c : Add more unit-tests to this file as needed.

#include "unity.h"
#include "Mockmessage.h"
#include "message processor.h"
// This only tests if we process at most 3 messages
void test process 3 messages(void) {
message read ExpectAndReturn(NULL, true);
message read IgnoreArg message to read();
message read ExpectAndReturn(NULL, true);
message read IgnoreArg message to read();
// Third time when message read() is called, we will break the loop since it is meant to process 3 m
message read ExpectAndReturn(NULL, true);
message read IgnoreArg message to read();
// Since we did not return a message that starts with '$' this should return false

TEST ASSERT FALSE(message processor());

}

void test process message with dollar sign(void) {

}

void test process messages without any dollar sign(void) {
}

// Add more tests if necessary

Hint (sample code):

#include "unity.h"
#include "Mockmessage.h"

#include "message processor.h"

static bool message read stub(message s *message to read, int call count) {

bool message was read = false;

if (call count >= 2) {
message was read = false;
} else {

message was_read = true;

if (call count == 0) {

message to read->data[0] 'x';
}
if (call count == 1) {

message to read->data[l]

}

return message was read;

1l
“r

}

// This only tests if we process at most 3 messages

void test process messages with stubWithCallback(void) {
// message processor() makes a call to:

// bool message read(message s *message to read);

// Whenever message read() occurs, it will go to your custom "stub" function

// Once we stub, then each function call to message read() will go to message read stub()
message read StubWithCallback(message read stub);

// Function under test

message procesor();

}

// Add more tests if necessary

Requirements

e Test thoroughly
o Do not hack internals of a module.
o This means that only operate using the APIs, and do not modify the data structure
e Each test should start with a known initial state, you should not rely on previous test to run before the
current test

© setUp() method may be used to re-initialize code modules

Revision #17
Created 4 years ago by Preet Kang
Updated 11 months ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

