
Critical Section

FreeRTOS Producer Consumer Tasks

FreeRTOS X

To go over Critical Sections in an application as well as other kernel API calls that, which for the most

part, you should refrain from using unless necessary.

Critical sections (also called critical regions) are sections of code that makes sure that only one thread

is accessing resource or section of memory at a time. In a way, you are making the critical code atomic

in a sense that another task or thread will only run after you exit the critical section.

Implementations of a critical section are varied. Many systems create critical sections using

semaphores, but that is not the only way to produce a critical section.

Code Block 1. Entering and Exiting a Critical Section (FreeRTOS.org)

Using the two API calls taskENTER_CRITICAL() and taskEXIT_CRITICAL(), one is able to enter and exit a

Critical Section

Objective

What are Critical Sections

How to Define a Critical Section
 /* Enter the critical section. In this example, this function is itself called

 from within a critical section, so entering this critical section will result

 in a nesting depth of 2. */

 taskENTER_CRITICAL();

 /* Perform the action that is being protected by the critical section here. */

 /* Exit the critical section. In this example, this function is itself called

 from a critical section, so this call to taskEXIT_CRITICAL() will decrement the

 nesting count by one, but not result in interrupts becoming enabled. */

 taskEXIT_CRITICAL();

critical section.

Typically, when FreeRTOS is ported to a system, critical sections will STOP/DISABLE the OS Tick

interrupt that calls the RTOS kernel. If the OS tick interrupt triggers during your critical section, the

interrupt is in a pending state until you re-enable interrupts. It is not missed, but is delayed due to the

interrupts that get disabled.

First of all, a mutex provides you the ability to guard critical section of code that you do not want to run

in multiple tasks at the same time. For instance, you do not want SPI bus to be used simultaneously in

multiple tasks. Choose a mutex whenever possible, but note that a critical section with interrupt disable

and re-enable method is typically faster. If all you need to do is read or write to a few standard number

data types atomically then a critical section can be utilized. But a better alternative would be to

evaluate the structure of your tasks and see if there is really a need to use a mutex or critical section.

Implementation in FreeRTOS

If you task takes too long to do its operation, RTOS can perform in a real time manner because it

has been shutdown during your critical section. Which is why you need to super selective about

using a critical section.

?

The FreeRTOS implementation for Critical Sections by Espressive (ESP32 platform) does not

use RTOS, but actually uses a mutex that is passed in instead. It becomes an abstraction to

using semaphore take and give API calls.

?

Critical Section with interrupt enable/disable
vs. Mutex

Use a mutex when using a peripheral that you must not use simultaneously, like SPI, UART, I2C etc.

For example, disabling and re-enabling interrupts to guard your SPI from being accessed by another

task is a poor choice. This is because during the entire SPI transaction, you will have your interrupts

disabled and no other (higher) priority tasks can get scheduled and the OS could miss its ticks. In this

case, a mutex is a better choice because you only want to guard the tasks from accessing this critical

section from each other, and you do not need care if other tasks get scheduled if they will not use the

SPI bus.

Learn how Tasks and Queues work

Assess how task priorities affect the RTOS Queue cooperative scheduling

Tasks of equal priority that are both ready to run are scheduled by the RTOS in a round-robin fashion.

This type of context switch is called Preemptive Context Switch.

Queues' API can also perform context switches, but this is a type of Cooperative Context Switch.

What this means is that if xQueueSend() API is sending an item to a higher priority task that was waiting

on the same queue using the xQueueReceive() API, then the sending task will switch context inside of

the xQueueSend() function over to the other task. Therefore, task priorities matter when using the

queue API.

Also note that when the cooperative context switch occurs, it does not wait for the next tick of

preemptive scheduling to switch context. Typical RTOSes support both cooperative and preemptive

scheduling, and in fact, you can turn off preemptive scheduling in FreeRTOSConfig.h

FreeRTOS Producer

Consumer Tasks
Objective

Queues and Task Priorities

static QueueHandle_t switch_queue;

typedef enum {

 switch__off,

 switch__on

} switch_e;

// TODO: Create this task at PRIORITY_LOW

void producer(void *p) {

 while (1) {

 // This xQueueSend() will internally switch context to "consumer" task because it is higher priority than this "producer" task

 // Then, when the consumer task sleeps, we will resume out of xQueueSend()and go over to the next line

 // TODO: Get some input value from your board

 const switch_e switch_value = get_switch_input_from_switch0();

 // TODO: Print a message before xQueueSend()

 // Note: Use printf() and not fprintf(stderr, ...) because stderr is a polling printf

 xQueueSend(switch_queue, &switch_value, 0);

 // TODO: Print a message after xQueueSend()

 vTaskDelay(1000);

 }

}

// TODO: Create this task at PRIORITY_HIGH

void consumer(void *p) {

 switch_e switch_value;

 while (1) {

 // TODO: Print a message before xQueueReceive()

 xQueueReceive(switch_queue, &switch_value, portMAX_DELAY);

 // TODO: Print a message after xQueueReceive()

 }

}

void main(void) {

 // TODO: Create your tasks

 xTaskCreate(producer, ...);

 xTaskCreate(consumer, ...);

 // TODO Queue handle is not valid until you create it

 switch_queue = xQueueCreate(<depth>, sizeof(switch_e)); // Choose depth of item being our enum (1 should be okay for this example)

 vTaskStartScheduler();

Finish producer task that reads a switch value and sends it to the queue

Create an enumeration such as typedef enum { switch__off, switch__on} switch_e;

Create a queue, and have the producer task send switch values every second to the queue

Finish consumer task that is waiting on the enumeration sent by the producer task

After ensuring that the producer task is sending values to the consumer task, do the following:

Ensure that the following is already setup:

Print a message producer task before and after sending the switch value to the queue

Print a message in the consumer task before and after receiving an item from the queue

You may use the following:
printf("%s(), line %d, sending message\n", __FUNCTION__, __LINE__);

Use higher priority for producer task , and note down the order of the print-outs

Use higher priority for consumer task , and note down the order of the print-outs

Use same priority level for both tasks, and note down the order of the print-outs

What is the purpose of the block time during xQueueReceive() ?

What if you use ZERO block time during xQueueReceive() ?

}

Assignment

Note down the Observations by doing the following:

Answer Additional Questions:

What to turn in

Submit all relevant source code

Relevant screenshots of serial terminal output

Submit explanation to the questions as comments in your code at the top of your source code file

Explanation of the Observations

Explanation for the Additional Questions

This extra credit will help you in future labs, so it is highly recommended that you achieve this. You will

add a CLI handler to be able to:

Suspend a task by name

Resume a task by name

Please follow this article to add your CLI command. Here is reference code for your CLI:

Extra Credit

app_cli_status_e cli__task_control(app_cli__argument_t argument, sl_string_t user_input_minus_command_name,

 app_cli__print_string_function cli_output) {

 sl_string_t s = user_input_minus_command_name;

 // If the user types 'taskcontrol suspend led0' then we need to suspend a task with the name of 'led0'

 // In this case, the user_input_minus_command_name will be set to 'suspend led0' with the command-name removed

 if (sl_string__begins_with_ignore_case(s, "suspend")) {

 // TODO: Use sl_string API to remove the first word, such that variable 's' will equal to 'led0'

 // TODO: Or you can do this: char name[16]; sl_string__scanf("%*s %16s", name);

 // Now try to query the tasks with the name 'led0'

 TaskHandle_t task_handle = xTaskGetHandle(s);

 if (NULL == task_handle) {

 // note: we cannot use 'sl_string__printf("Failed to find %s", s);' because that would print existing string onto itself

 sl_string__insert_at(s, "Could not find a task with name:");

 cli_output(NULL, s);

 } else {

 // TODO: Use vTaskSuspend()

 }

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/sj2-board#bkmrk-cli-commands

 } else if (sl_string__begins_with_ignore_case(s, "resume")) {

 // TODO

 } else {

 cli_output(NULL, "Did you mean to say suspend or resume?\n");

 }

 return APP_CLI_STATUS__SUCCESS;}

