Lesson ADC + PWM

Pin Selection and Pin Mode

ADC (Analog to Digital Converter)
PWM (Pulse Width Modulation)
Lab: ADC + PWM

Pin Selection and Pin Mode

Objective

Know how to select a specific functionality of a given LPC40xx pin. Know how to select a pin mode.

Pin Selection

Every GPIO pin of the LPC40xx is capable of other alternative functionalities. Pin selection is the
method by which a user is able to designate the functionality of any given pin. For example, GPIO Pin
0.0 can alternatively be used for CAN channel 1 receive, UART channel 3 transmit, and 12C channel 1

data line.

Table 84. Type D I/O Control registers: FUNC values and pin functions

Register
IOCON_PO_O
IOCON_PFO_1
IOCON_PO_2
ICCON_PO_3
ICCON_PO_4
IOCON_PO_5
IOCON PO 6
IOCON_PO_10
IOCON_PO_11
IOCON_FPO_14
IOCON_PO_15
IOCON_PO_16
IOCON_PD_17
IOCON_PO_18
IOCON_PD_19
IOCCON_PO_20
IOCON_PO_21
IOCON_FO_22
IOCON_F1_0
IOCON_P1_1
IOCON_P1_2
IOCON_P1_3
IOCON_P1_4
IOCON_P1_8
IOCON_P1_9
IOCON_P1_10
IOCON_P1_11
IOCON_P1_12
IOCON_P1_13

000
Po[o]
PO[1]
PO[Z]
PO[3]
PO[4]
PO[5]
PO[8]
PO[10]
PO[11]
PO[14]
PO[15]
PO[16]
PO[17]
PO[18]
PO[19]
PO[20]
PO[21]
FO[22]
P1[0]
P[]
P12
P1[3]
P1[4]
P1[8]
Pi[9]
P1[10]
P1[11]
Pi[12]
P1[13]

Figure 1B. I/O Pin Select Mux (from LPC2148, for illustration purposes only)

001 o010 011 100

CAN_RD1 U3_TXD 12C1_SDA Uo_TXD

CAN_TD1 U3_RXD 12¢1_SCL U0_RXD

Uo_TXD U3 _TxD

U0_RXD U3_RXD

12S_RX_SCK CAN_RD2 T2_CAPD

125_RX_WS CAN_TD2 T2_CAP1

125 RX_SDA SSP1 SSEL T2 MATO U1 RTS

uz_TXD 12C2_SDA T3_MATO

UZ_RXD 12C2_SCL T3_MAT1

USB_HSTENZ SSP1_SSEL USBE_CONNECT2

U1_TXD SSP0_SCK

U1_RXD SSPO_SSEL

u1_CcTS SSPO_MISO

u1_DcD SSP0_MOSI

U1_DSR SD_CLK 12C1_SDA

U1_DTR SD_CMD 12C1_SCL

U1 RI SD_PWR U4_OE CAN_RD1

U1_RTS SD_DATI0] U4_TXD CAN_TD1

ENET_TXDO T3_CAP1 SS8P2_SCK

ENET_TXD1 T3_MAT3 SSP2_MOSI

ENET_TXD2 SD_CLK PWMO[1]

ENET_TXD3 SD_CMD PWMO[2]

ENET_TX_EN T3_MATZ SSP2_MISO

ENET_CRS T3_MAT1 S55P2_SSEL

ENET_RXD0 T3_MATO

ENET_RXD1 T3_CAPD

ENET_RXD2 SO_DAT[2) PWMO[B]

ENET_RXD3 SOD_DAT[3] PYWMO_CAPO

ENET_RX_DV
r--———7>""="7"="7"7"=7"=7"7"¥=7"="="7¥==7¥=¥=7”"=”"="="”""=== 1
I i
: MUX :
E PO.1 — E
: R0 —— - 21
: PAM3 ——| ‘
i i
: EINTO —— :
I PINSELD I
1 1
| 01 |
: 31 30 3 2 0

Value of FUNC field in IOCON register

101

CMP_ROSC
CMP_RESET
CMP_ROSC

SPIFI_IO[2]
SPIFI_IO[3]
SPIFI_IO[1]
SPIFI_IO[0]

U4_SCLK
SPIFI_CLK

CMP1_0OUT

110

11

LCD_VD{0]
LCD_VD{1]
LCD_VD{8]
LCD_VD[5]
LCD_VD[10]

LCD_VD{13]
LCD_VD[14]

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-22-at-6.58.24-PM.png

In order to select the 12C2_SDA functionality of pin 0.10, one must set bit 1, reset bit 0 & 3 of the
IOCON register function field to 010.

// Using LPC40xx.h pointers

LPC IOCON->PO 10 &= ~0b0O10O[Tl// reset all bits of function[2:0]
LPC_IOCON->PO_10 |= 0b010;[I)// set the function bit for I2C2

Pin Mode

The LPC17xx has several registers dedicated to setting a pin's mode. Mode refers to enabling/disabling

pull up/down resistors as well as open-drain configuration. PINMODE registers allow users to enable a

pull-up (00). BNMODES i mode select register 0

(11). PINMC pinmoDE1 Pin mode select register 1
PINMODEZ2 Pin mode select register 2
FINMODE3 Pin mode select register 3.
PINMODE4 Pin mode select register 4
FINMODES Pin mode select register 5
PINMODES Pin mode select register 8
FINMODET Pin mode select register 7
PINMODES Pin mode select register 9
FINMODE_ODO Open drain mode control register 0
PINMODE_OD1 Open drain mode control register 1
FINMODE_OD2 Open drain mode control register 2
PINMODE_OD3 Open drain mode control register 3
FINMODE_OD4 Open drain mode control register 4

saim el mall Alaa

0

o R e R e R = e I = = I = = = R =

P £ IV o \ WSS N BENE 2N PN

Ox4002 C040
0x4002 CO44
Ox4002 C048
0x4002 CO4C
Ox4002 CO50
0x4002 CO54
Ox4002 CO58
0x4002 CO5C
Ox4002 COB4
0x4002 COG8
Ox4002 COEC
0x4002 COT0
Ox4002 COT4
0x4002 CO78

Figure 2. LPC17xx User Manual PINMODE & PINMODE_OD

pull-down

Table 87. Pin Mode select register 0 (PINMODED - address 0x4002 C040) bit description

PINMODED Symbol Value Description Reset
value
1:0 PO.0OMODE Part 0 pin 0 on-chip pull-up/down resistor control. 00

00 P0.0 pin has a pull-up resistor enabled.

01 P0.0 pin has repeater mode enabled.

10 P0.0 pin has neither pull-up nor pull-down.
11 P0.0 has a pull-down resistor enabled.

32 PO.OTMODE Port 0 pin 1 control, see PO.OOMODE. 0o
54 PO.O2MODE Port 0 pin 2 control, see PO.OOMODE. 0o
76 PO.O3MODE Port 0 pin 3 control, see PO.OOMODE. 0o
o8 P0.04MODELY Port 0 pin 4 control, see PO.OOMODE. 0o
11:10 P0.0SMODEL! Port 0 pin & control, see PO.OOMODE. 0o
13:12 PO.OGMODE Port 0 pin 6 control, see PO.OOMODE. 0o
15:14 PO.OTMODE Port 0 pin 7 control, see PO.OOMODE. 0o
17:16 PO.OBMODE Port 0 pin & control, see PO.OOMODE. 0o
19:18 PO.09MODE Port 0 pin Scontrol, see PO.OOMODE. 0o
21:20 POAOMODE Port 0 pin 10 control, see PO.OOMODE. 0o
23:22 PO.11MODE Port 0 pin 11 control, see PO.0OMODE. 0o
29:24 - Reserved. MNA
31:30 PO.1SMODE Port 0 pin 15 control, see PO.OOMODE. 0o

Table 94. Open Drain Pin Mode select register 0 (PINMODE_ODO - address 0x4002 C0E8) bit

description
PINMODE Symbol Value Description Reset
_oDo value
0 PO.000DE Port 0 pin 0 open drain mode control. 0
0 P0.0 pin is in the normal (not open drain) mode.
P0.0 pin is in the open drain mode.
1 PO.010DEl Port 0 pin 1 open drain mode control, see P0.000D 0
2 FO.020D Port 0 pin 2 open drain mode control, ses PO.000D 0
3 PO.0O30D Port 0 pin 3 open drain mode control, ses PO.000OD 0
4 F0O.040D Port 0 pin 4 open drain mode control, ses PO.000D 0
5 PO.0OS0D Port 0 pin 5 open drain mode control, ses PO.000OD 0
3] PO.OG0OD Port 0 pin 6 open drain mode control, ses PO.000OD 0
T PO.OTOD Port 0 pin 7 open drain mode control, ses PO.000OD 0
i FO.080D Port 0 pin & open drain mode control, ses PO.000D 0
4 PO.090D Port 0 pin 9 open drain mode control, ses PO.000OD 0

Figure 4. LPC17xx User Manual PINMODE_ODO

For example, if one desires to configure pin 0.09 to enable a pull-up resistor and open drain mode, one
must clear bits 18 & 19 of PINMODEDO register, and set bit 9 of register PINMODE_ODO.

// Using the memory address from the datasheet
*(0x4002C040) &= ~(0x3 << 18);[1V// Clear bits 18 & 19
*(0x4002C068) |= (06x1 << 9);[IV// Set bit 9

// Using LPC17xx.h pointers

LPC_PINCON->PINMODEO &= ~(0x3 << 18);[1l// Clear bits 18 & 19
LPC_PINCON->PINMODE 0DO |= (0x1 << 9);[I)// Set bit 9

You may find it helpful to automate register setting and/or clearing. Per our Coding Standards,
inline functions should be used (not Macros).

ZPIO | i i
SET gl GEIO L
Q . ———1 Pin
ZPIO o B ! :
LR T : :
Alternate ' !
Functions GPIO: i !
PINDIE - '+' -
PINCON SPICPIM PINCOH:
PINZEL FINMODE
‘ GPICOFICMASK

Figure 5. LPC17xx Pin Registers & Circuit (credit:
https://sites.google.com/site/johnkneenmicrocontrollers/input_output/io_1768)

https://sites.google.com/site/johnkneenmicrocontrollers/input_output/io_1768
http://cmpe.kammce.io/books/cmpe-146/page/course-coding-standards#bkmrk-constexpr-functions-

ADC (Analog to Digital

Converter)

Objective

To learn about the use of ADCs, their different types, their related parameters, and how to set up an
ADC driver for the LPC40xx.

What does ADC accomplish?

An Analog to Digital Converter is needed whenever one needs to interface a digital system with an
analog device. For example, if one needs to read the voltage across a resistor, and use the value within
an algorithm running on the SJOne board, an ADC circuit is needed to convert the analog voltage to a
discrete digital value. Luckily, the LPC40xx, like most microcontrollers, includes an ADC circuit that we
can utilize.

Different types of ADC circuits

Flash ADC

The simplest and fastest ADC circuit relies on a series of comparators that compare the input voltage to
a range of voltage reference values. The digital output of the comparators is wired to a priority encoder.
The output of the priority encoder represents the binary value of the input voltage.

Note that the number of bits of the binary output (n) requires (2"-1) comparators. Therefore, the circuit
complexity grows exponentially with respect to the number of bits used to represent the converted value
(resolution).

Analog
input

Vdd
T

B-line to
3-line
| priority |
encoder ,
' — — Binary output

Figure 1. Flash ADC Circuit (credit: allaboutcircuits.com)

Digital
output

Time —

Figure 2. Flash ADC Timing (credit: allaboutcircuits.com)

http://35.197.33.68:8080/uploads/images/gallery/2018-01-Jan/flash_adc_circuit.png

Digital Ramp ADC

This type of ADC utilizes an up counter, a comparator, a DAC, and a register. DACs (Digital Analog
Converters), as their name suggests, perform the inverse operation of an ADC, i.e. They convert a
binary input into an analog voltage output. The up counter starts at zero and counts up synchronously.
The output of the counter is wired to the DAC. The analog output of the DAC is compared to the analog
input signal. As long as the comparator indicates that the input voltage is larger than the DAC's value,
the counter continues to increment. Eventually, the DAC's output will exceed the input voltage, and the
comparator will activate the counter's reset signal as well as the register's load signal. The register's
output represents the binary value of the input analog signal.

Note that be ild—d Elj_d to
produce the M1, _> i DAC
| o
i CTR _tcoce —
L e
g e
Load 5555666
L L
Vdd
N
_ L] SRG |-
vin :
— Bina
— | outplrl)f
o> N
1

Figure 3. Digital Ramp ADC Circuit (credit: allaboutcircuits.com)

Analog
input

Digital

OUtp ut ‘—‘_'_L_,_._‘_‘_._._‘_'_._f

Time —»

Finiire 4a Dinital Ramn ADC. Timina (credit: allahotiteirciiits com)
Digital
output .

- i - =
longer shorter
time time

Figure 4b. Digital Ramp ADC Timing Variance (credit: allaboutcircuits.com)

Successive Approximation ADC

A successive approximation ADC works very similarly to a digital ramp ADC, except it utilizes a
successive approximation register (SAR) in place of the counter. The SAR sets each bit from MSB to
LSB according to its greater/less than logic input signal.

This type of ADC is more popular than flash and digital ramp due to its consistent timing and relatively
scalable design.

L — + DAC
SAR R
> /< - f‘E‘ E E
e
Pone e eg oot
T T
Vdd
1
] SRG
Vi, -
L Bina
— outpm
N |
L
Analog
input
Time —
Digital
output H_‘_._‘_._'_‘—'—'—L_,_,_,_,_‘—'—'I
Time —=

Figure 6. Successive Approximation ADC Timing (credit: allaboutcircuits.com)

Tracking ADC

A Tracking ADC works similarly to the Digital Ramp ADC, except instead of an up counter, it utilizes an

up-down counter. The output of the comparator determines whether the counter increments or
decrements. It doesn't use a register to hold the processed value since it's constantly tracing the input

value.
Note that this type vdd vdd gnal.
Additionally, it suf 7 bid vn as bit bobble.
UL—p —{ DAC
2
CTR L 5 5C¢C B
5 teoeee
V b eeeees
. .
Vi, :
Bina
cuterJ)(

Figure 7. Tracking ADC Circuit (credit: allaboutcircuits.com)

AlTdly
input

—

S

Time —=
Digital
Time —

Figure 8. Tracking ADC Timing (credit: allaboutcircuits.com)

DAC-free ADCs

Besides Flash ADC, all previous ADC circuits rely on using DACs to convert an estimated digital value
to an analog one and compare it to the input signal. There are other types of ADC technologies that do
not use DACs. They rely on the known time it takes an RC circuit to discharge to match the input analog
signal. Single Slope, Dual Slope, and Delta-Sigma ADCs implement this concept.

ADC Parameters

Resolution

This is typically the most-highlighted aspect of any ADC technology. Resolution refers to the number of
bits of the ADC's output. It's a measurement of how coarse/fine the converted value is. A four bit 5V
ADC offers 16 values for the voltage range 0 V to 5 V (i.e. roughly 312 mV per bit increment). A 10 bit
5V ADC offers 1024 values for the same voltage range (roughly 5 mV per bit increment).

Sampling Frequency

This is simply the circuit's latency (i.e. the rate of converting an analog input signal to digital bits). The
highest frequency of an analog signal that a given ADC circuit is able to adequately capture is known as
Nyquist frequency. Nyquist frequency is equal to one-half of the circuits sampling frequency. Therefore,
to adequately convert an analog signal of frequency n Hz, one must have an ADC circuit with 2n Hz

sampling frequency. Otherwise, aliasing happens. Aliasing occurs when an ADC circuit samples an
input signal too slowly, thus producing an output signal that is not the true input signal, but rather an
alias of it.

AN

Figure 9. ADC Aliasing

Step Recovery

This is a measurement of how quickly an ADC's output is able to respond to a sudden change in input.
For example, flash and successive approximation ADCs are able to adjust relatively quickly to input
changes while tracking ADC struggles with large input changes.

Range

This is a measurement of the range of voltages that an ADC circuit is able to capture and output. For
example, the LPC40xx has a range of OV to 3.3V. Other ADCs may have bigger ranges or even
variable ranges that a user can select, such as this device: https://www.mouser.com/ds/2/609/AD7327-
EP-916882.pdf

Error

This is a measurement of the systematic error of any given ADC circuit. This is measured by comparing
the actual input signal to its digital output equivalent. Note that, this error measurement is only valid
within the range of the ADC in question.

https://www.mouser.com/ds/2/609/AD7327-EP-916882.pdf
https://www.mouser.com/ds/2/609/AD7327-EP-916882.pdf

ADC Driver for LPC40xx

The ADC is configured using the following registers:

1.

Power: In the PCONP register (Section 3.3.2.2), set the PCADC bit.

Remark: On reset, the ADC is disabled. To enable the ADC, first set the PCADC bit,
and then enable the ADC in the ADOCR register (bit PDN Table 678). To disable the
ADC, first clear the PDN bit, and then clear the PCADC bit.

. Peripheral clock: The ADC operates from the common PCLK that clocks both the bus

interface and functional portion of most APB peripherals. See Section 3.3.3.5. To
scale the clock for the ADC, see bits CLKDIV in Table 678.

. Pins: Enable ADCO pins and pin modes for the port pins with ADCO functions through

the relevant IOCON registers (Section 7.4.1).

Interrupts: To enable interrupts in the ADC, see Table 682. Interrupts are enabled in
the NVIC using the appropriate Interrupt Set Enable register. Disable the ADC
interrupt in the NVIC using the appropriate Interrupt Set Enable register.

DMA: See Section 32.6.4. For GPDMA system connections, see Table 696.

Figure 10. LPC40xx User Manual ADC Instructions

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-22-at-7.14.55-PM.png

Table 677. Register overview: ADC (base address 0x4003 4000)

Generic Access Address Description Reset Table

Name offset valuel'l

CR R/W 0x000 A/D Control Register. The ADCR register must be written to select 1 678
the operating mode before A/D conversion can occur.

GDR RW 0x004 A/D Global Data Register. This register contains the ADC's DONE MNA 679
bit and the result of the most recent A/D conversion.

INTEN RW 0x00C AJ/D Interrupt Enable Register. This register contains enable bits 0x100 680

that allow the DOME flag of each A/D channel to be included or
excluded from contributing to the generation of an A/D interrupt.

DRO RO 0x010 A/D Channel 0 Data Register. This register contains the result of MNA 681
the most recent conversion completed on channel 0.

DR1 RO 0xD14 A/D Channel 1 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 1.

DR2 RO 0x018 A/D Channel 2 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 2.

DR3 RO 0x01C A/D Channel 3 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 3.

DR4 RO 0x020 A/D Channel 4 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 4.

DR5 RO 0x024 A/D Channel 5 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 5.

DR6 RO 0x028 A/D Channel 6 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 6.

DR7 RO 0x2C A/D Channel 7 Data Register. This register contains the result of NA 681
the most recent conversion completed on channel 7.

STAT RO 0x030 AJ/D Status Register. This register contains DONE and OVERRUN 0 682
flags for all of the A/D channels, as well as the A/D interrupt/DMA
flag.

TRM R/W 0x034 ADC trim register. 0 683

Figure 11. LPC40xx User Manual ADC Control Register

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-22-at-7.15.06-PM.png

PWM (Pulse Width

Modulation)

Objective

To learn about the use of PWM signals, their related parameters, and how to set up an ADC driver for

the LPC40xx.

What is a PWM signal?

A Pulse Width Modulation (PWM) signal is simply a digital signal that is on (high) for part of its period
and off (low) for the remainder of its period. If such a signal is on half the time and off the other half,

t
PWM Signal 1 ‘

PWM Signal 2

L L

Figure 1. PWM Signal (credit: www.bvsystems.be)

PWM Parameters

Duty Cycle

http://books.socialledge.com/uploads/images/gallery/2018-02-Feb/pwm.jpg

A duty cycle of a certain PWM signal is given as a percentage, and it represents the ratio of the signal
"on" time to the signal's full period. In other words, if the duty cycle of a signal is said to be 75%, it
means that this signal is high for 75% of its period and low for the remaining 25%. 100% duty cycle
implies a constantly high signal, and a 0% duty cycle implies a constantly grounded signal.

Frequency

The frequency of a PWM signal (just like any electrical signal) refers to the rate at which the signal
repeats per second. A 1 Hz signal repeats every 1 second while a 1 kHz signal repeats every 1
millisecond.

Duty

pe———]

Figure 2. Parameters of a PWM signal

PWM Signal Applications

Generally speaking, a PWM signal is a way for a digital system to interface with an analog device.

DC Motors

DC Motors are controllable via a PWM signal. The duty cycle of the signal is typically linearly
proportional to the velocity of the motor. For example, a 60 RPM motor driven by a 50% duty cycle
PWM signal will rotate at a 30 RPM velocity. It's worth noting that such a signal needs to run at a high
enough frequency (10 kHz for example) so the motor can rotate smoothly. A low-frequency PWM signal
(say 10 Hz) will result in an observable choppy motor motion.

LEDs

The brightness of an LED can be controlled via a reasonably high-frequency PWM signal. A 5V 50%

http://books.socialledge.com/uploads/images/gallery/2018-02-Feb/pwm-signal.png

PWM signal applied to an LED will have the same brightness effect as a constant 2.5V signal applied to
the same LED.

Servos

Servos are typically controlled by a 50 Hz PWM signal, where the duty cycle of the signal determines
the angle of the servo. Typically, the duty cycle ranges from 5% to 10%, causing the servo to rotate to
its smallest and largest angles, respectively.

PWM Driver for LPC40xx

26.1 Basic configuration

The PWM is configured using the following registers:

1. Power: In the PCONP register (Section 3.3.2.2), set bit PCPWM1.

Remark: On reset, PWM1 is enabled (PCPWM1 = 1) and PWMO is disabled
(PCPWM1 =0).

2. Peripheral clock: The PWMs operate from the common PCLK that clocks both the bus
interface and functional portion of most APB peripherals. See Section 3.3.3.5.

3. Pins: Select PWM pins and pin modes for port pins with PWM functions through the
relevant IOCON registers (Section 7.4.1).

4. Interrupts: See registers PWMMCR (Table 564) and PWMCCR (Table 567) for match
and capture events. Interrupts are enabled in the NVIC using the appropriate Interrupt
Set Enable register.

Theory of Operation

Behind every PWM is a Peripheral (HW) counter (TC). For "Single Edge" PWM, when the counter
starts from zero, the output of the PWM (GPIO) can reset back to logical 1. Then, when the value of the
"Match Register (MR)" occurs, then the PWM output can set to logical 0. Therefore, the maximum limit
of the TC controls the frequency of the PWM signal, and the MR registers control the duty cycle.

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-22-at-7.37.44-PM.png

LPC Microcontroller PWM Module Timing Diagram

Image not found or type unknown

Software PWM

This section demonstrates the LPC PWM operation in software. The LPC processor implements similar

code, but in the hardware.

void lpc pwm(void)

{
bool GPIO PWMl = true; // Hypothetical GPIO that this PWM channel controls

uint32 t TC = 0; // Hardware counter
uint32_t MRO = 500; // TC resets when it matches this

// Assumptions: SW instructions add no latency, and delay us() is the only instruction that takes til
while (1)
{

if (++TC >= MRO) {
TC = 0;
GPIO PWM1 = true; // GPIO is HIGH on the reset of TC

if (TC >= MR1) {
GPIO PWM1 = false; // GPIO resets upon the match register

// 1uS * 500 = 500uS, so 2Khz PwWM
delay us(1);
+}

Registers of relevance

What you are essentially trying to control is the PWM frequency and the PWM duty cycle. For instance,
a 50% duty cycle with just a 1Hz PWM will blink your LED once a second. But a 50% duty cycle 1Khz
signal will dim your LED to 50% of the total brightness it is capable of. There are "rules" that the PWM
module uses to alter a GPIO pin's output and these rules are what you are trying to understand. So
read up on "Rules of Single Edge Conrolled PWM" in your datasheet and overall the LPC PWM chapter
at minimum 10 times to understand it. You may skip the sections regarding "capture", and
"interrupts”. Furthermore, to use the simplified PWM, you can use the Single Edge PWM rather than
the more complex Double Edge because the Single Edge edge PWM is controlled by a dedicated MR
register.

TC, MRO, MCR and PR: The Prescalar (PR) register controls the tick rate of the hardware counter that
can alter the frequency of your PWM. For instance, when the CPU clock is 10Mhz, and the PR =9,
then the TC counts up at the rate of 10/(9+1) = 1 Mhz. Hence, the PR affects the frequency, but we still
need a "max count" to set the frequency with precision. So if the TC increments at 1Mhz, and MRO is
set to 100, then you will have 1000Khz/100 = 10Khz PWM.

The MCR register controls what happens to the TC when a match occurs. The one subtle, but
important thing we need to do is that when the MRO match occurs, we need the TC to reset to zero to
be able to use MRO as a frequency control.

TCR and PCR: The PCR register enables the channels, so if you have PWM1.4 as an output, that
means you heed to enable channel 4. The TCR register is a key register that will enable your PWM

module.

Lab: ADC + PWM

Obijective

Improve an ADC driver, and use an existing PWM driver to design and implement an embedded

application, which uses RTOS queues to communicate between tasks.
This lab will utilize:

® ADC Driver
© You will improve the driver functionality
© You will use a potentiometer that controls the analog voltage feeding into an analog pin of your
microcontroller
* PWM Driver
© You will use an existing PWM Driver to control a GPIO
© An led brightness will be controlled, or you can create multiple colors using an RGB LED
®* FreeRTOS Tasks
© You will use FreeRTOS queues

Assignment

Preparation:
Before you start the assignment, please read the following in your LPC User manual
(UM10562.PDF)
- Chapter 7: 1/0 configuration
2 - Chapter 32: ADC

Part 0: Use PWM1 driver to control a PWM output pin

The first thing to do is to select a pin to function as a PWM signal. This means that once you select a
pin function correctly, then the pin's function is controlled by the PWM peripheral and you cannot control
the pin's HIGH or LOW using the GPIO peripheral. By default, a pin's function is as GPIO, but for

example, you can disconnect this function and select the PWM function by using the I0CON P2 0

—GE‘I
—PWM[1] B2, 0—
=1 TXD

I0CeM B2 D

1. Re-use the PWM driver

* Study the pwml.h and pwml.c files under 13 drivers directory

2. : .
Locate the pins that the PWM peripheral can control at Table 84: FUNC values and pin functions

* These are labeled as PwM1[x] where PwM1 is the peripheral, and [x] is a channel
° So PwM1[2] means PWM1, channel 2
* Now find which of these channels are available as a free pin on your SJ2 board and connect the
RGB led
° Setthe FUNC of the pin to use this GPIO as a PWM output

3. Initialize and use the PWM-1 driver
* |nitialize the PWML1 driver at a frequency of your choice (greater than 30Hz for human eyes)
* Set the duty cycle and let the hardware do its job :)

4. You are finished with Part 0 if you can demonstrate control over an LED's brightness using the HW

based PWM method

PWM

TC

#include "pwml.h"

MUX

MATCH
REGISTER
(MR)

GPIO
MUX

#include "FreeRT0S.h"

#include "task.h"

void pwm task(void *p) {

pwml init single edge(1000);

PWMSEL

// Locate a GPIO pin that a PWM channel will control

// NOTE You can use gpio_ construct with function() API from gpio.h
// TODO Write this function yourself

pin configure pwm channel as io pin();

// We only need to set PWM configuration once, and the HW will drive

// the GPIO at 1000Hz, and control set its duty cycle to 50%

pwml set duty cycle(PWM1 2 0, 50);

// Continue to vary the duty cycle in the loop

uint8 t percent =

while (1) {

pwml set duty cycle(PWMl1 2 0, percent);

0;

if (++percent > 100) {

percent = 0;

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__pwm_block.png

vTaskDelay(100);

}
void main(void) {
xTaskCreate(pwm_task, ...);

vTaskStartScheduler();}

Part 1: Alter the ADC driver to enable Burst Mode

¢ Study adc.h and adc.c filesin 13 drivers directory and correlate the code with the ADC
peripheral by reading the LPC User Manual.
© Do not skim over the driver, make sure you fully understand it.
* |dentify a pin on the SJ2 board that is an ADC channel going into your ADC peripheral.

° Reference the 1/0 pin map section in Table 84,85,86: FUNC values and pin functions
* Connect a potentiometer to one of the ADC pins available on SJ2 board. Use the ADC driver and
implement a simple task to decode the potentiometer values and print them. Values printed should
range from 0-4095 for different positions of the potentiometer.

// TODO: Open up existing adc.h file
// TODO: Add the following API
/**
* Implement a new function called adc__enable burst mode() which will
* set the relevant bits in Control Register (CR) to enable burst mode.
&7
void adc_ enable burst mode(void);
VAo
* Note:
* The existing ADC driver is designed to work for non-burst mode
*
* You will need to write a routine that reads data while the ADC is in burst mode

* Note that in burst mode, you will NOT read the result from the GDR register

* Read the LPC user manual for more details

*/uintl6 t adc get channel reading with burst mode(uint8 t channel number);

Trigger sources:
Vrelp P127]
Vdda P2010]
L TO_MAT[1]
TO_MAT3]
T1_MAT[0]
ADO[D] [~ T1_MAT[1]
ADO[1] AAA
. Ready
o Digita Start
function
ADO[3] sclcion ““’:::;'_9 126t [powerbown | conro
and pin b <
ADO[4] mj’; plexer Result
clock oy [
ADO[5] controls clock divider registers
ADO[E]
poun o]
/T/ PCONP[PCADC] DMA request
channel select interrupt request

port controls from
IOCON registers

digital functions tao/
from other areas

101217

Fig 163. ADC block diagram

#include

#include

#include

void adc
// TOD
// TOD
// TOD

}

void adc
adc_pi

adc_ i

// TOD
// You

"adc.h"

"FreeRT0S.h"
“task.h"
_pin initialize(void) {
0: Ensure that you also set ADMODE to 0
0: Ensure you set pull/up and pull/down bits 0O

0: Then use gpio construct with function(...)

_task(void *p) {
n_initialize();

nitialize();

0 This is the function you need to add to adc.h

can configure burst mode for just the channel you are using

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__adc_block.png

adc__enable burst mode();

// Configure a pin, such as P1.31 with FUNC 011 to route this pin as ADC channel 5
// You can use gpio construct with function() API from gpio.h

pin_configure_adc_channel as io pin(); // TODO You need to write this function

while (1) {
// Get the ADC reading using a new routine you created to read an ADC burst reading
// TODO: You need to write the implementation of this function

const uintl6e t adc value = adc_ get channel reading with burst mode(ADC CHANNEL 2);
vTaskDelay(100);

}
void main(void) {
xTaskCreate(adc_task, ...);

vTaskStartScheduler();}

Part 2: Use FreeRTOS Queues to communicate between tasks

® Read this chapter to understand how FreeRTOS queues work
* Send data from the adc_task tothe RTOS queue

* Receive data from the gueue in the pwm task

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/queues

ADC MUX

v 4“ v »{ ADC PIN |—) GPIOMUXI—)

adc_task()

Q(\v{ GPIO MUX fg——P*™_task () m —
\

#include "adc.h"

#include "FreeRT0S.h"
#include "task.h"
#include "queue.h"
// This is the queue handle we will need for the xQueue Send/Receive API
static QueueHandle t adc to pwm task queue;
void adc_task(void *p) {
// NOTE: Reuse the code from Part 1

int adc reading = 0; // Note that this 'adc reading' is not the same variable as the one from adc ta
while (1) {

// Implement code to send potentiometer value on the queue

// a) read ADC input to 'int adc reading'

// b) Send to queue: xQueueSend(adc_to pwm task queue, &adc reading, 0);

vTaskDelay(100);

}
void pwm_ task(void *p) {
// NOTE: Reuse the code from Part 0
int adc reading = 0;
while (1) {
// Implement code to receive potentiometer value from queue

if (xQueueReceive(adc to pwm task queue, &adc reading, 100)) {

http://books.socialledge.com/uploads/images/gallery/2019-09-Sep/adc_pwm__data_flow.png

// We do not need task delay because our queue API will put task to sleep when there is no data in

// vTaskDelay(100);

}

void main(void) {
// Queue will only hold 1 integer
adc_to pwm task queue = xQueueCreate(l, sizeof(int));
xTaskCreate(adc task, ...);
xTaskCreate(pwm _task, ...);

vTaskStartScheduler();}

Part 3: Allow the Potentiometer to control the RGB LED

At this point, you should have the following structure in place:

* ADC task is reading the potentiometer ADC channel, and sending its values over to a queue
* PWM task is reading from the queue

Your next step is:

* PWM task should read the ADC queue value, and control the an LED

Final Requirements

Minimal requirement is to use a single potentiometer, and vary the light output of an LED using a PWM.
For extra credit, you may use 3 PWM pins to control an RGB led and create color combinations using
a single potentiometer.

* Make sure your Part 3 requirements are completed

pwm_task should print the values of MRO, and the match register used to alter the PWM LEDs

© For example, MR1 may be used to control P2.0, so you will print MRO, and MR1

° Use memory mapped LPC PWM registers from 1pc40xx.h
* Make sure BURST MODE is enabled correctly.

adc_task should convert the digital value to a voltage value (such as 1.653 volts) and print it out to
the serial console
© Remember that your VREF for ADC is 3.3, and you can use ratio to find the voltage value

adc _voltage / 3.3 = adc_reading / 4095

