
LPC40xx MCU Memory Map

FreeRTOS & Tasks

Lab: FreeRTOS Tasks

Lesson FreeRTOS +
LPC40xx

A memory map is a layout of how the memory maps to some set of information. With respect to

embedded systems, the memory map we are concerned about maps out where the Flash (ROM),

peripherals, interrupt vector table, SRAM, etc are located in address space.

Memory mapped IO is a means of mapping memory address space to devices external (IO) to the CPU,

that is not memory.

Flash could be mapped to address 0x00000000 to 0x00100000 (1 Mbyte range)

GPIO port could be located at address 0x1000000 (1 byte)

Interrupt vector table could start from 0xFFFFFFFF and run backwards through the memory space

SRAM gets the rest of the usable space (provided you have enough SRAM to fill that area)

It all depends on the CPU and the system designed around it.

Port mapped IO uses additional signals from the CPU to qualify which signals are for memory and

which are for IO. On Intel products, there is a (~M/IO) pin that is LOW when selecting MEMORY and

HIGH when it is selecting IO.

The neat thing about using port mapped IO, is that you don't need to sacrifice memory space for IO, nor

do you need to decode all 32-address lines. You can limit yourself to just using 8-bits of address space,

which limits you to 256 device addresses, but that may be more than enough for your purposes.

LPC40xx MCU Memory Map

What is a Memory Map

Memory mapped IO

For example (assuming a 32-bit system)

Port Mapped IO

Figure 2. Address Decoding with port map

(http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html)

LPC40xx memory map

http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html

Figure 3. LPC40xx Memory Map

From this you can get an idea of which section of memory space is used for what. This can be found in

the UM10562 LPC40xx user manual. If you take a closer look you will see that very little of the address

space is actually taken up. With up to 4 billion+ address spaces (because 2^32 is a big number) to use

you have a lot of free space to spread out your IO and peripherals.

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-12-at-4.27.57-PM.png

The LPC40xx chips, to reduce bus line count, make all the peripherals 32-bit word aligned. Which

means you must grab 4-bytes at a time. You cannot grab a single byte (8-bits) or a half-byte (16-bits)

from memory. This eliminates the 2 least significant bits of address space.

Please read the following code snippet. This is runnable on your system now. Just copy and paste it

into your main.c file.

Reducing the number of lines needed to decode IO

Accessing IO using Memory Map in C

/*

 The goal of this software is to set the GPIO pin P1.0 to

 low then high after some time. Pin P1.0 is connected to an LED.

 The address to set the direction for port 1 GPIOs is below:

 DIR1 = 0x20098020

 The address to set a pin in port 1 is below:

 PIN1 = 0x20098034

*/

#include <stdint.h>

volatile uint32_t * const DIR1 = (uint32_t *)(0x20098020);

volatile uint32_t * const PIN1 = (uint32_t *)(0x20098034);

int main(void)

{

 // Set 0th bit, setting Pin 0 of Port 1 to an output pin

 (*DIR1) |= (1 << 0);

 // Set 0th bit, setting Pin 0 of Port 1 to high

 (*PIN1) |= (1 << 0);

 // Loop for a while (volatile is needed!)

 for(volatile uint32_t i = 0; i < 0x01000000; i++);

 // Clear 0th bit, setting Pin 0 of Port 1 to low

 (*PIN1) &= ~(1 << 0);

 // Loop forever

 while(1);

The above is nice and it works, but it's a lot of work. You have to go back to the user manual to see

which addresses are for what register. There must be some better way!!

Take a look at the lpc40xx.h file, which It is located in the

sjtwo-c/projects/lpc40xx_freertos/lpc40xx.h . Here you will find definitions for each peripheral

memory address in the system.

Let's say you wanted to port the above code to something a bit more structured:

Open up "lpc40xx.h"

Search for "GPIO"

You will find a struct with the name LPC_GPIO_TypeDef.

Now search for "LPC_GPIO_TypeDef" with a #define in the same line.

You will see that LPC_GPIO_TypeDef is a pointer of these structs

#define LPC_GPIO0 ((LPC_GPIO_TypeDef *) LPC_GPIO0_BASE)

#define LPC_GPIO1 ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE)

#define LPC_GPIO2 ((LPC_GPIO_TypeDef *) LPC_GPIO2_BASE)

#define LPC_GPIO3 ((LPC_GPIO_TypeDef *) LPC_GPIO3_BASE)

#define LPC_GPIO4 ((LPC_GPIO_TypeDef *) LPC_GPIO4_BASE)

We want to use LPC_GPIO1 since that corresponds to the GPIO port 1.

 return 0;}

volatile keyword tells the compiler not to optimize this variable out, even if it seems useless

?

const keyword tells the compiler that this variable cannot be modified

?

Notice "const" placement and how it is placed after the uint32_t *. This is because we want to

make sure the pointer address never changes and remains constant, but the value that it

references should be modifiable.

?

Using the LPC40xx.h

If you inspect LPC_GPIO_TypeDef, you can see the members that represent register DIR and PIN

You can now access DIR and PIN registers in the following way:

At first this may get tedious, but once you get more experience, you won't open the lpc40xx.h file very

often. This is the preferred way to access registers in this course and in industry.

#include "lpc40xx.h"

int main(void)

{

 // Set 0th bit, setting Pin 0 of Port 1 to an output pin

 LPC_GPIO1->DIR |= (1 << 0);

 //// Set 0th bit, setting Pin 0 of Port 1 to high

 LPC_GPIO1->PIN |= (1 << 0);

 //// Loop for a while (volatile is needed!)

 for(volatile uint32_t i = 0; i < 0x01000000; i++);

 //// Clear 0th bit, setting Pin 1.0 to low

 LPC_GPIO1->PIN &= ~(1 << 0);

 //// Loop forever

 while(1);

 return 0;}

On occasions, the names of registers in the user manual are not exactly the same in this file.

?

To introduce what, why, when, and how to use Real Time Operating Systems (RTOS) as well as get you

started using it with the sjtwo-c environment.

I would like to note that this page is mostly an aggregation of information from Wikipedia and the

FreeRTOS

Website.

They have services to make communicating with Networking devices and files systems possible without

having

to understand how the hardware works. Operating systems may also have a means to multitasking by

allow

multiple processes to share the CPU at a time. They may also have means for allowing processes to

communicate together.

FreeRTOS & Tasks

Introduction to FreeRTOS

Objective

What is an OS?

Operating system (OS) is system software that manages computer hardware and

software resources and provides common services for computer programs. -

Wikipedia

“

Operating systems like Linux or Windows

An RTOS is an operating system that meant for real time applications. They typically have fewer

services such

as the following:

Parallel Task Scheduler

Task communication (Queues or Mailboxes)

Task synchronization (Semaphores)

What is an RTOS?

Why use an RTOS?

You do not need to use an RTOS to write good embedded software. At some point

though, as your application grows in size or complexity, the services of an RTOS

might

become beneficial for one or more of the reasons listed below. These are not

absolutes,

but opinion. As with everything else, selecting the right tools for the job in hand is an

important first step in any project.

In brief:

Abstract out timing information

The real time scheduler is effectively a piece of code that allows you to specify

the

timing characteristics of your application - permitting greatly simplified, smaller

(and

therefore easier to understand) application code.

Maintainability/Extensibility

Not having the timing information within your code allows for greater

maintainability

“

and extensibility as there will be fewer interdependencies between your

software

modules. Changing one module should not effect the temporal behavior of

another

module (depending on the prioritization of your tasks). The software will also be

less

susceptible to changes in the hardware. For example, code can be written such

that it

is temporally unaffected by a change in the processor frequency (within

reasonable

limits).

Modularity

Organizing your application as a set of autonomous tasks permits more

effective

modularity. Tasks should be loosely coupled and functionally cohesive units

that within

themselves execute in a sequential manner. For example, there will be no need

to

break functions up into mini state machines to prevent them taking too long to

execute

to completion.

Cleaner interfaces

Well defined inter task communication interfaces facilitates design and team

development.

Easier testing (in some cases)

Task interfaces can be exercised without the need to add instrumentation that

may

have changed the behavior of the module under test.

Code reuse

Greater modularity and less module interdependencies facilitates code reuse

across

projects. The tasks themselves facilitate code reuse within a project. For an

example

of the latter, consider an application that receives connections from a TCP/IP

stack -

the same task code can be spawned to handle each connection - one task per

connection.

Improved efficiency?

Using FreeRTOS permits a task to block on events - be they temporal or

external to

the system. This means that no time is wasted polling or checking timers when

there

are actually no events that require processing. This can result in huge savings

in

processor utilization. Code only executes when it needs to. Counter to that

however is

the need to run the RTOS tick and the time taken to switch between tasks.

Whether

the saving outweighs the overhead or vice versa is dependent of the

application. Most

applications will run some form of tick anyway, so making use of this with a tick

hook

function removes any additional overhead.

Idle time

It is easy to measure the processor loading when using FreeRTOS.org.

Whenever the

idle task is running you know that the processor has nothing else to do. The

idle task

also provides a very simple and automatic method of placing the processor into

a low

power mode.

Flexible interrupt handling

Deferring the processing triggered by an interrupt to the task level permits the

interrupt

handler itself to be very short - and for interrupts to remain enabled while the

task level

processing completes. Also, processing at the task level permits flexible

prioritization -

more so than might be achievable by using the priority assigned to each

peripheral by

the hardware itself (depending on the architecture being used).

Mixed processing requirements

Simple design patterns can be used to achieve a mix of periodic, continuous

and

event driven processing within your application. In addition, hard and soft real

time

requirements can be met though the use of interrupt and task prioritisation.

Easier control over peripherals

Gatekeeper tasks facilitate serialization of access to peripherals - and provide a

good

mutual exclusion mechanism.

Etcetera

Think about the following system. Reasonable complex, right?

- FreeRTOS Website (https://www.freertos.org/FAQWhat.html)

Design Scenario

Building a controllable assembly conveyor belt

Without a scheduler

http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/TaQcontrollable assembly-conveyor-belt-system.png
http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/TaQcontrollable assembly-conveyor-belt-system.png

 ? Small code size.

 ? No reliance on third party source code.

 ? No RTOS RAM, ROM or processing overhead.

 ? Difficult to cater for complex timing requirements.

 ? Does not scale well without a large increase in complexity.

 ? Timing hard to evaluate or maintain due to the inter-dependencies between the different

functions.

 ? Simple, segmented, flexible, maintainable design with few inter-dependencies.

 ? Processor utilization is automatically switched from task to task on a most urgent need basis

with no

explicit action required within the application source code.

 ? The event driven structure ensures that no CPU time is wasted polling for events that have not

occurred.

Processing is only performed when there is work needing to be done.

 * Power consumption can be reduced if the idle task places the processor into power save

(sleep) mode,

but may also be wasted as the tick interrupt will sometimes wake the processor unnecessarily.

 * The kernel functionality will use processing resources. The extent of this will depend on the

chosen

kernel tick frequency.

 ? This solution requires a lot of tasks, each of which require their own stack, and many of which

require a

queue on which events can be received. This solution therefore uses a lot of RAM.

 ? Frequent context switching between tasks of the same priority will waste processor cycles.

A FreeRTOS task is a function that is added to the FreeRTOS scheduler using the xTaskCreate() API

call.

With a scheduler

FreeRTOS Tasks

What is an FreeRTOS Task?

A task will have the following:

1. A Priority level
2. Memory allocation
3. Singular input parameter (optional)
4. A Task name
5. A Task handler (optional): A data structure that can be used to reference the task later.

A FreeRTOS task declaration and definition looks like the following:

The highest priority ready tasks ALWAYS runs

If two or more have equal priority, then they are time sliced

Low priority tasks only get CPU allocation when:

All higher priority tasks are sleeping, blocked, or suspended.

Tasks can sleep in various ways, a few are the following:

Explicit "task sleep" using API call vTaskDelay();

void vTaskCode(void * pvParameters)

{

 /* Grab Parameter */

 uint32_t c = (uint32_t)(pvParameters);

 /* Define Constants Here */

 const uint32_t COUNT_INCREMENT = 20;

 /* Define Local Variables */

 uint32_t counter = 0;

 /* Initialization Code */

 initTIMER();

 /* Code Loop */

 while(1)

 {

 /* Insert Loop Code */

 }

 /* Only necessary if above loop has a condition */

 xTaskDelete(NULL);}

Rules for an RTOS Task

Sleeping on a semaphore

Sleeping on an empty queue (reading)

Sleeping on a full queue (writing)

The following code example shows how to use xTaskCreate() and how to start the scheduler using
vTaskStartScheduler()

Adding a Task to the Scheduler and
Starting the Scheduler

int main(int argc, char const *argv[])

{

 //// You may need to change this value.

 const uint32_t STACK_SIZE = 128;

 xReturned = xTaskCreate(

 vTaskCode, /* Function that implements the task. */

 "NAME", /* Text name for the task. */

 STACK_SIZE, /* Stack size in words, not bytes. */

 (void *) 1, /* Parameter passed into the task. */

 tskIDLE_PRIORITY,/* Priority at which the task is created. */

 &xHandle); /* Used to pass out the created task's handle. */

 /* Start Scheduler */

 vTaskStartScheduler();

 return 0;}

Task Priorities

High Priority and Low Priority tasks

In the above situation, the high priority task never sleeps, so it is always running. In this situation where

the low priority task never gets CPU time, we consider that task to be starved.

In the above situation, the two tasks have the same priority, thus they share the CPU. The time each

task is allowed to run depends on the OS tick frequency. The OS Tick Frequency is the frequency

that the FreeRTOS scheduler is called in order to decide which task should run next. The OS Tick is a

hardware interrupt that calls the RTOS scheduler. Such a call to the scheduler is called a preemptive

context switch.

When the RTOS scheduler switches from one task to another task, this is called a Context Switch.

In order for a task, or really any executable, to run, the following need to exist and be accessible and

storable:

Program Counter (PC)

Tasks of the same priority

Context Switching

What needs to be stored for a Context switch to happen

http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/BSERTOS-Tasks-HL.png
http://books.socialledge.com/uploads/images/gallery/2017-12-Dec/U42RTOS-Tasks-MM.png

This holds the position for which line in your executable the CPU is currently executing.

Adding to it moves you one more instruction.

Changing it jumps you to another section of code.

Stack Pointer (SP)

This register holds the current position of the call stack, with regard to the currently executing

program. The stack holds information such as local variables for functions, return addresses and

[sometimes] function return values.

General Purpose Registers

These registers are to do computation.

In ARM:

R0 - R15

In MIPS:

$v0, $v1

$a0 - $a3

$t0 - $t7

$s0 - $s7

$t8 - $t9

Intel 8086

AX

BX

CX

DX

SI

DI

BP

1. A hardware timer interrupt or repetitive interrupt is required for this preemptive context switch.

1. This is independent of an RTOS.
2. Typically, 1ms or 10ms.

2. The OS needs hardware capability to have a chance to STOP synchronous software flow and

enter the OS “tick” interrupt.

1. This is called the "Operating System Kernel Interrupt"
2. We will refer to this as the OS Tick ISR (interrupt service routine)

How does Preemptive Context Switch work?

3. Timer interrupt calls RTOS Scheduler

1. RTOS will store the previous PC, SP, and registers for that task.
2. The scheduler picks the highest priority task that is ready to run.
3. Scheduler places that task's PC, SP, and registers into the CPU.
4. Scheduler interrupt returns, and the newly chosen task runs as if it never stopped.

Most industrial applications use an RTOS tick rate of 1ms or 10ms (1000Hz, or 100Hz). In the 2000s,

probably 100Hz was more common, but as processors got faster, 1000Hz became the norm. One could

choose any tick rate, such as 1.5ms per tick, but using such non-standard rates makes API timing non-

intuitive, as vTaskDelay(10) would result in sleep time of approximately 15ms . This is yet another

reason why 1000Hz is a good tick rate as vTaskDelay(10) would sleep for approximately 10ms , which

is intuitive to the developer because the tick times adopt the units of milliseconds.

With a far assumed that the RTOS tick ISR (preemptive scheduling) consumes 200 clock cycles, then

on a 20Mhz processor, it would only consume 10uS of overhead per scheduling event. When

cooperative scheduling triggers a context switch, it would result in a similar overhead as a "software

interrupt" is issued to the CPU to perform the context switch. So this means that each scheduling event

has an overhead of 20uS on a 20Mhz processor (assuming 200 clocks for RTOS interrupt). Based on

these numbers, here is the overhead ratio of using different tick rates.

 100Hz1000Hz

10,000Hz

(100uS

per

tick)

Scheduling

Overhead

per

second

2,000uS20,000uS200,000uS

Tick Rate

CPU

consumption

for

RTOS

scheduling

0.2%2% 20%

Based on the numbers above, 1000Hz is a great balance, while the 10,000Hz tick rate would provide

more frequent time slices at the expense of more frequent scheduling overhead.

only and nothing more More (Definitions, Synonyms, Translation)

Why OS Ticks are 1ms or 1KHz?

1. Shorter Ticks means that there is less time for your code to run. Ex: if OS ticks = 150us

instead of 1ms and the context switching takes 100us then you are only left with 50us to

complete your task. Hence, RTOS will be only busy with context switching nothing else.

2. Big Ticks such as 4ms, the CPU will remain in the wait state. For example, the context

switching takes 100us then you have 3900us to complete your task. However, the task will only

take 900us to complete. Then 3000us will be unnecessary overhead on CPU wait time.

?

1. Load firmware onto the SJ board
2. Observe the RTOS round-robin scheduler in effect
3. Provide hands-on experience with the UART character output timing

We will be working with an assumption for this lab, so we will need to change the UART speed. In

Visual Studio Code IDE, hit Ctrl+P and open peripherals_init.c . Then modify the UART speed to

38400. After doing so, make sure you open your serial terminal or Telemetry web terminal and change

the port speed to also 38400.

The peripherals_init__uart0_init() is executed before your main() function. When you are finished

with this lab, you can choose to change this back to 115200bps for faster UART speed.

Lab: FreeRTOS Tasks
Objective

Part 0a. Change UART speed

static void peripherals_init__uart0_init(void) {

 // Do not do any bufferring for standard input otherwise getchar(), scanf() may not work

 setvbuf(stdin, 0, _IONBF, 0);

 // Note: PIN functions are initialized by board_io__initialize() for P0.2(Tx) and P0.3(Rx)

 uart__init(UART__0, clock__get_peripheral_clock_hz(), 38400); // CHANGE FROM 115200 to 38400

 // ...}

Part 0b. Create Task Skeleton

A task in an RTOS or FreeRTOS is nothing but a forever loop, however unless you sleep the task, it will

consume 100% of the CPU. For this part, study existing main.c and create two additional tasks for

yourself.

1.
Fill out the xTaskCreate() method parameters.

- See the FreeRTOS+Tasks document or checkout the FreeRTOS xTaskCreate API website

- Recommended stack size is: 4096 / sizeof(void*)

2.
Note that you want to make sure you use fprintf(stderr, ...) in place of printf(...)

- fprintf(stderr, ...) is slower and eats up CPU, but it is useful during debugging

#include "FreeRTOS.h"

#include "task.h"

static void task_one(void * task_parameter);

static void task_two(void * task_parameter);

int main(void) {

 // ...

}

static void task_one(void * task_parameter) {

 while (true) {

 // Read existing main.c regarding when we should use fprintf(stderr...) in place of printf()

 // For this lab, we will use fprintf(stderr, ...)

 fprintf(stderr, "AAAAAAAAAAAA");

 // Sleep for 100ms

 vTaskDelay(100);

 }

}

static void task_two(void * task_parameter) {

 while (true) {

 fprintf(stderr, "bbbbbbbbbbbb");

 vTaskDelay(100);

 }}

Part 1: Create RTOS tasks

https://www.freertos.org/a00125.html

- printf(...) is faster (and efficient), but it queues the data to be "sent later"

3. Observe the output

- After you flash your program, check the output of the serial console

Fundamentals to keep in mind:

FreeRTOS tick rate is configured at 1Khz

- This means that the RTOS preemptive scheduling can occur every 1ms repetitively

#include "FreeRTOS.h"

#include "task.h"

static void task_one(void * task_parameter);

static void task_two(void * task_parameter);

int main(void) {

 /**

 * Observe and explain the following scenarios:

 *

 * 1) Same Priority: task_one = 1, task_two = 1

 * 2) Different Priority: task_one = 2, task_two = 1

 * 3) Different Priority: task_one = 1, task_two = 2

 *

 * Note: Priority levels are defined at FreeRTOSConfig.h

 * Higher number = higher priority

 *

 * Turn in screen shots of what you observed

 * as well as an explanation of what you observed

 */

 xTaskCreate(task_one, /* Fill in the rest parameters for this task */);

 xTaskCreate(task_two, /* Fill in the rest parameters for this task */);

 /* Start Scheduler - This will not return, and your tasks will start to run their while(1) loop */

 vTaskStartScheduler();

 return 0;

}

// ...

Part 2: Further Observations

Standout output (printf) is integrated in software to send data to your UART0

- This is the same serial bus that is used to load a new program (or hex file)

- The speed is defaulted to 38400bps, and since there is 10 bits of data used to send 1 byte, we can

send as many as 3840 characters per second

Critical thinking questions:

How come 4(or 3 sometimes) characters are printed from each task? Why not 2 or 5, or 6?

Alter the priority of one of the tasks, and note down the observations. Note down WHAT you see and

WHY.

Now that you have the code running with identical priority levels, try the following:

1. Change the priority of the two tasks

* Same Priority: task_one = 1, task_two = 1

* Different Priority: task_one = 2, task_two = 1

* Different Priority: task_one = 1, task_two = 2

2. Take a screenshot of what you see from the console
3. Write an explanation of why you think the output came out the way it did using your knowledge

about RTOS

Hint: You have to relate the speed of the RTOS round-robin scheduler with the speed of the

UART to answer the questions above

?

Part 3. Change the priority levels

Optional: If you have TraceAlyzer program installed, we encourage you to load this file and

inspect the trace.

?

http://books.socialledge.com/attachments/2

1. Relevant code
2. Your observation and explanation
3. Snapshot of the output for all scenarios

If your class requires you to turn in the assignment as a Gitlab link, you should:

Use this article to get started

Submit a link to Gitlab "Merge Request"

Be sure to ensure that your Merge Request is only the new code, and not a very large diff

What to turn in:

http://books.socialledge.com/books/industrial-applications-with-can-bus/page/lab-git

