
SPI (Serial & Peripheral Interface)

Mutexes

Structured Bit-fields Register Mapping

Lab: SPI Flash Interface

Lesson SPI

SPI is a high-speed, full-duplex bus that uses a minimum of 3 wires to exchange data (and a number of

device-selected wires). The popularity of this bus rose when SD cards (and its variants ie: micro-sd)

officially supported this bus according to the SD specifications. SPI allows microcontrollers to

communicate with multiple slave devices.

SPI (Serial & Peripheral

Interface)

What is SPI

SPI Bus Signals

Figure 1. SPI Signals

MASTER
Pin
Name

SLAVE
Pin
Name

Pin Function

MOSI SI
Master Out Slave In (driven by master), this pin is used to send sends data to
the slave device.

MISO SO
Master In Slave Out (driven by slave), this pin is used by the slave to send
data to the master device.

SCLK CLK
Serial Clock (driven by master), clock that signals when to read MISO and
MOSI lines

CS CS

Chip Select (driven by master), used to indicate to the slave that you want to
talk to it and not another slave device. This will activate the slave's MISO line.
MISO line is set to h-z if this is not asserted. MISO is set to high if this signal
is asserted.

 INT
Interrupt (Optional) (driven by slave), an interrupt signal to alert the master
that the slave device wants to communicate. Not all devices have this. This is
not always needed. This is not apart of the standard.

The SCK signal can reach speed of 24Mhz and beyond, however, SD cards are usually limited to

24Mhz according to the specifications. Furthermore, any signal over 24Mhz on a PCB requires special

design consideration to make sure it will not deteriorate, thus 24Mhz is the usual maximum.

Furthermore, you need a CPU twice as fast as the speed you wish to run to support it. For example, to

run at 24Mhz SPI, we need 48Mhz CPU or higher. Because each wire is driven directly (rather than

open-collector), higher speeds can be attained compared to 400Khz I2C bus.

Suppose that you wanted to interface a single SPI bus to three SD cards, the following will need to be

done :

Connect all MOSI, MISO, and SCK lines together

Connect individual CS lines of three SD cards to SPI master (your processor)

It is also recommended to provide a weak pull-up resistor on each of the SPI wires otherwise some

devices like an SD card may not work. 50K resistor should work, however, lower resistor value can

achieve higher SPI speeds.

Multi-slave bus

Figure 2. Typical SPI Bus (wikipedia SPI, user Cburnett)

The "CS" section of the SPI/SSP chapter describes the information if your microcontroller is going to be

a slave on the SPI bus. Since your LPC micro is a master in reality, please do not confuse the CS pin

for the SPI slave functionality. Even if the CS pin is actually used to CS the Adesto flash, it is just an

ordinary GPIO and will not function as the one described in your SPI/SSP chapter.

Therefore, do not configure the "SSEL" in your PINSEL (or PIN function) since that is reserved for the

case when your micro is an SPI Slave. In your case, the same GPIO that has the "SSEL" capability is a

simple GPIO to control the CS of the SPI Flash memory.

As a warning, if your firmware selects more than one SPI slave chip select, and they both

attempt to drive the MISO line, since those lines are totem-pole (push-pull), there will be bus

contention and could possibly destroy both SPI devices.

?

SPI Timing Diagram

Figure 3. SPI timing diagram

SPI has a few timing modes in which data is qualified on the rising or falling edge. In this case, and

most, we qualify the MOSI and MISO signals on the rising edge. For a whole transaction to be qualified,

the ~CS must be asserted. When the CS pin is pulled high (deasserted), the transaction is over and

another transaction can be performed. This must be done for each transaction done by the master to

the slave.

The SPI is labeled as SSP on LPC17xx or LPC40xx User Manual due to historic reasons, and this

chapter in the datasheet shows the software setup very well. After the SPI is initialized on the hardware

pins, the next steps is to write an SPI function that will exchange a byte. Note that if the master wants

to receive data, it must send a data byte out to get a data byte back . The moment we write to the

DR (data register) of the SPI peripheral, the MOSI will begin to send out the data. At the same time, the

MISO will capture the data byte back to the same DR register. In other words, SPI bus is a forced full-

duplex bus.

High Speed:

There is no standard speed limit for SPI beyond how fast a Single-Ended Signal can propagate

and how fast an SPI compatible device can react.

In other words, how fast can you talk over a wire and how fast can a slave device read a clock

signal.

Simple:

Doesn't require special timing or a special state-machine to run. It doesn't really need hardware

peripheral either. It can be bit-banged via GPIO.

Synchronous:

This communication standard utilizes a clock to qualify signals.

Full-Duplex:

Communication both ways. The slave to speak to the master at the same time that the master

can speak to the slave device.

Multi-slave:

You can talk to as many slaves as you have chip selects.

IO/Pin Count:

IO count increases by one for each slave device you introduce, since each slave device needs a

chip select.

You also almost always need at least 4 wires for this communication protocol.

There are some special cases that do not fit this but they are uncommon.

Master Only Control:

Although the communication protocol can allow for full-duplex communication, the only way for a

slave device to be able to communicate with the master is if the master initiates communication.

A slave can only speak when spoken to.

Ensure that two transactions with the SPI device do not occur back to back without a delay. For

instance, insert at least 1uS delay between successive DS and CS of another transaction.

?

Why use SPI

Pros

Cons

https://en.wikipedia.org/wiki/Single-ended_signaling
https://en.wikipedia.org/wiki/Single-ended_signaling

Figure 2. SPI Driver from LPC40xx datasheet

Note that when we refer to SPI, we are referring to the SSP peripheral in the LPC user manual.

SSP stands for Synchronous Serial Protocol and SPI is one of the synchronous serial protocols it

can perform.

Study the schematic, and take a note of which pins have the SSP2 or SPI#2 peripheral pin-out.

Note this down or draw this out.

Software Driver

Preparation for the SPI driver

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-29-at-7.27.32-PM.png

Study and read the SSP2 LPC user manual chapter a few times

Study the schematic, and locate the CS pin for the SPI flash attached to SSP2, then write a simple

GPIO driver for this to select and deselect this pin

Read the SPI flash datasheet that shows the SPI transactions for read/write, signature read etc.

Rev.4 board has Adesto flash, and previous revisions have Atmel flash.

Multitasking Warnings: if your software runs multiple tasks, and these tasks can access SPI,

care needs to be taken because if two CS signals are asserted at the same time, hardware

damage will occur. This leads to the topic of using a mutex (semaphore) under FreeRTOS and

you can read the FreeRTOS tutorial to learn more.

?

Set the clock rate to be below the specification of the SPI device you are interfacing.

?

http://www.socialledge.com/sjsu/index.php?title=FreeRTOS_Tutorial

Binary semaphores and a mutex are nearly the same constructs except that a mutex have the feature

of priority inheritance, where in a low priority task can inherit the priority of a task with greater priority if

the higher priority task attempts to take a mutex that the low priority task possess.

This article provides a quick review on Binary Semaphore, Mutex, and Queue.

Below is an illustration of the scenario where using a semaphore can cause priority inversion.

Figure 1. Low priority task is currently running and takes a semaphore.

Mutexes

Binary Semaphore vs Mutex

Priority Inversion Using a Semaphore

https://percepio.com/2016/08/11/rtos-101-semaphores-and-queues/
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/APkCMPE-146-Diagrams.png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/CMPE-146-Diagrams-(1).png

Figure 2. OS Tick event occurs.

Figure 3. High priority task is ready to run and selected to run.

Figure 4. High priority task attempts to take semaphore and blocks.

Figure 5. Since high priority task is blocked, the next ready task that can run is the low priority task. The

OS tick event occurs.

http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/CMPE-146-Diagrams-(2).png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/CMPE-146-Diagrams-(3).png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/CMPE-146-Diagrams-(4).png

Figure 6. The OS tick event occurs, a middle priority task, that never sleeps is ready to run, it begins to

run, high priority task is blocked on semaphore and low priority task is blocked by the middle priority

task. This is priority inversion, where a medium priority task is running over a higher priority task.

Priority inheritance is the means of preventing priority inversion.

Figure 7. Moving a bit further, the high priority task attempts to take the Mutex

Priority Inheritance using Mutex

http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/CMPE-146-Diagrams-(5).png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/cWJCMPE-146-Diagrams.png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/nl9CMPE-146-Diagrams-(1).png

Figure 8. Low priority task inherates the highest priority of the task that attempts to take the mutex it

posses.

Figure 9. OS Tick2 occurs, and medium priority task is ready, but the low priority task has inheritated a

higher priority, thus it runs above the medium priority task.

Figure 10. Low priority task gives the mutex, low priority task de-inheritates its priority, and the high

task immediately begins to run. It will run over the medium task.

http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/FYACMPE-146-Diagrams-(2).png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/LJfCMPE-146-Diagrams-(3).png
http://books.socialledge.com/uploads/images/gallery/2018-01-Jan/l3JCMPE-146-Diagrams-(4).png

Figure 11. At give2 high priority task releases the mutex and sleeps. Some time elapses, and then the

medium task begins to run. No priority inversion occurs in this scenario, the RTOS rule of highest

priority runs first is held.

The design pattern for a mutex should be exclusively used as a protection token. Mutexes can be

used in place of as semaphores but the addition work of priority inheritance will cause this approach to

take longer and thus be less efficient than a semaphore.

Design Pattern

#include "FreeRTOS.h"

#include "semphr.h"

// In main(), initialize your Mutex:

SemaphoreHandle_t spi_bus_mutex = xSemaphoreCreateMutex();

void task_one()

{

 while(1) {

 if(xSemaphoreTake(spi_bus_mutex, 1000)) {

 // Use Guarded Resource

 // Give Semaphore back:

 xSemaphoreGive(spi_bus_mutex);

 }

 }

}

void task_two()

{

 while(1) {

 if(xSemaphoreTake(spi_bus_mutex, 1000)) {

 // Use Guarded Resource

 // Give Semaphore back:

 xSemaphoreGive(spi_bus_mutex);

 }

 }

Good APIs actually have protection such that the mutex cannot be given accidentally.

See this link

}

Other notes

https://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/tirtos/2_14_02_22/exports/tirtos_full_2_14_02_22/docs/doxygen/html/_mutex_p_8h.html

Structures in C: http://www.cplusplus.com/doc/tutorial/structures/

Unions in C: http://www.cplusplus.com/doc/tutorial/other_data_types/

Lets observe the status register for the ADXL362 accelerometer. The choice of this device is arbitrary.

Figure 1. ADXL362 Status Register

Normally, and more portably, to store information about the awake bit, you would do the following:

Structured Bit-fields Register

Mapping

Please Review the Following

Register Structure Mapping

http://www.cplusplus.com/doc/tutorial/structures/
http://www.cplusplus.com/doc/tutorial/other_data_types/

The above is fine, but it would be great to do this in a more elegant fashion. For example, the following:

To do something like this, you can define the adlx_t structure in the following way:

The colon specifies the start of a bit field. The number after the colon is the length in bits that label will

/* Get byte from accelerometer */

uint8_t status = getStatusByte();

/* Store 6th bit using a shift and mask */

bool awake = ((status >> 6) & 0b1);

// You can also do this (to guarantee the result to be true or false only, rather than 0 or (1 << 6) which is 64

bool awake = (status & (1 << 6)) ? true : false;

bool awake = !!(status & (1 << 6));

/* Now use the stored awake boolean */

if(awake)

{

	doAThing();}

/* Get a byte and cast it to our adlx_t structure */

adlx_t status = (adlx_t)getStatusByte();

/* Now retrieve the awake bit using the following syntax */

if(status.awake)

{

	doAThing();}

typedef struct __attribute__((packed))

{

	uint8_t data_ready: 1;

	uint8_t fifo_ready: 1;

	uint8_t fifo_warning: 1;

	uint8_t fifo_overrun: 1;

	uint8_t activity: 1;

	uint8_t : 1; /* Un-named padding, since I don't care about the inactivity signal */

	uint8_t awake: 1;

	uint8_t error: 1;} adlx_t;

take up. The __attribute__((packed)) is a necessary compiler directive, specific to GCC which tells the

compiler to make sure that the structure is packed together in the way that it is shown. It also tells the

compiler to not rearrange it or expand it in order to make it more efficient to work with by the CPU.

Lets say we wanted to set the whole structure to zeros or a specific value, we can do this using unions.

This allows the user to do the following:

NOTE: that the bit-field example and the shift and mask example are equivalent computationally.

One is not necessarily more efficient the other. On one hand, you are writing the mask, in the

other, the compiler does this for you.

?

Using Unions

typedef union

{

	uint8_t byte;

	struct

	{

		uint8_t data_ready: 1;

		uint8_t fifo_ready: 1;

		uint8_t fifo_warning: 1;

		uint8_t fifo_overrun: 1;

		uint8_t activity: 1;

		uint8_t inactivity: 1;

		uint8_t awake: 1;

		uint8_t error: 1;

	} __attribute__((packed));} adlx_t;

/* Declare status variable */

adlx_t status;

/* Set whole bit field through the byte member */

status.byte = getStatusByte();

/* Use awake bit */

if (status.awake)

What about large data structures? For example, the ID3v1 metadata structure for MP3 files. This

datastructure contains title name, artist and many other bits of information about the song to be played.

It contains 128 bytes

FieldLengthDescription

header3 "TAG"

title 30

30
characters
of
the
title

artist30

30
characters
of
the
artist
name

album30

30
characters
of
the
album
name

year 4

A
four-
digit
year

comment28
The
comment.

{

	doSomething();

}

/* Clear bit field */status.byte = 0;

zero-
byte

1

If
a
track
number
is
stored,
this
byte
contains
a
binary
0.

track1

The
number
of
the
track
on
the
album,
or
0.
Invalid,
if
previous
byte
is
not
a
binary
0.

genre1

Index
in
a
list
of
genres,
or
255

This is not a bit field, but the same principles stand. This can be turned into a structure as well:

typedef union

{

	uint8_t buffer[128];

Now, it would take up 128 bytes of memory in to create one of these structures and we want to be

conservative. To use use the structure properties, and reduce space usage you can utilize pointers and

casting.

Using some casting techniques and macros you can do something like the following:

	struct

	{

		uint8_t header[3];

		uint8_t title[30];

		uint8_t artist[30];

		uint8_t album[30];

		uint8_t year[4];

		uint8_t comment[28];

		uint8_t zero;

		uint8_t track;

		uint8_t genre;

	} __attribute__((packed));} ID3v1_t;

ID3v1_t mp3;

/* Some function to get the ID3v1 data */

dumpMP3DataIntoBuffer(&mp3.buffer[0]);

/* Compare string TAG with header member */

printf(" Title: %.30s\n", mp3.title);printf("Artist: %.30s\n", mp3.artist);

Using Macros

#define ADLX(reg) (*((adlx_t*)(®)))

uint8_t status = getStatusByte();

if (ADLX(status).awake)

{

	doAThing();}

The above example that does not use bit-fields is quite portable, but bit-field mapping can be

problematic depending on these factors

1. Endianess of your system: If a bit-field of a status register is little-endian and your processor is

big-endian, the bits will be flipped.

1. This link explains this further: http://opensourceforu.com/2015/03/be-cautious-while-using-bit-

fields-for-programming/

2. Structure of your struct: in gcc, using __attribute__((packed)) is very important, because the

compiler may attempt to optimize that structure for speed, by expanding the members of the struct

into 32-bits, or it may reorder the members and bit to make easier to do operations on. In these

cases, the mapping will no longer work. This is something to consider when using this. This also

typically depends on the compiler options for compiling.
3. Mixing bit fields and members: See the link below on some issues that occurred when you mix

bit-fields with variables.

1. https://stackoverflow.com/questions/25822679/packed-bit-fields-in-c-structures-gc

Dangers of Using Bit-fields

http://opensourceforu.com/2015/03/be-cautious-while-using-bit-fields-for-programming/
http://opensourceforu.com/2015/03/be-cautious-while-using-bit-fields-for-programming/
https://stackoverflow.com/questions/25822679/packed-bit-fields-in-c-structures-gcc

The objective is to learn how to create a thread-safe driver for Synchronous Serial Port and to

communicate with an external SPI Flash device.

This lab will utilize:

SPI driver (LPC user manual calls SPI as SSP)

Code interface for the SPI flash

Basic knowledge of data structures

Mutex strategy to access the SPI flash safely across multiple tasks (or threads)

Logic Analyzer capture

Do not forget to select the PIN functions such that the peripheral can control SCK, MOSI, and MISO

pins

These should be IOCON registers of LPC40xx

You will not use the SSEL pin of the SPI driver

The pin that shows SSEL is actually purposed as a GPIO to select the external SPI flash memory

SSEL pin is meant for the purpose of your microcontroller acting as a SLAVE but since you are

trying to be the master, this SSEL pin does not apply to you. It is instead re-purposed as a GPIO

for your SPI flash memory.

Please read this great article also

Lab: SPI Flash Interface

Important Reminders

Assignment

Part 0: SPI Driver

https://electrosome.com/spi/

Preparation:

Before you start the assignment, please read Chapter 21: SSP in your LPC User manual (

UM10562.pdf). You can skip the sections related to interrupts or the DMA.

From LPC User manual to understand the different registers involved in writing a SSP2 driver

Refer table 84 from LPC User manual for pin configuration

From the schematics pdf(Schematics-RevE.2.pdf), identify the pin numbers connected to flash

memory and make a note of it because you will be needing them for pin function configuration

Read the external SPI flash datasheet (DS-AT25DN256_039.pdf) or (DS-AT25SF041_044) depends

on the board.

Implement ssp2_lab.h and ssp2_lab.c

Note that there is already an ssp2.h in your sample project, but you will re-write this driver. Refrain

from peeking the existing driver because you will have to re-write more complex drivers during your

exams without any reference code. If you get a compiler error about 'duplicate symbol' then please re-

name your SSP functions accordingly because this compiler error may be stating that there is existing

function with the same name in the SPI driver in another file.

#include <stdint.h>

void ssp2__init(uint32_t max_clock_mhz) {

 // Refer to LPC User manual and setup the register bits correctly

 // a) Power on Peripheral

 // b) Setup control registers CR0 and CR1

 // c) Setup prescalar register to be <= max_clock_mhz

https://www.adestotech.com/wp-content/uploads/DS-AT25SF041_044.pdf

Get the code below to work and validate that you are able to read SPI flash memory's manufacture id

and compare it with the SPI flash datasheet to ensure that this is correct.

}

uint8_t ssp2__exchange_byte(uint8_t data_out) {

 // Configure the Data register(DR) to send and receive data by checking the SPI peripheral status register

}

Part 1: SPI Flash Interface

#include "FreeRTOS.h"

#include "task.h"

#include "ssp2_lab.h"

// TODO: Implement Adesto flash memory CS signal as a GPIO driver

void adesto_cs(void);

void adesto_ds(void);

// TODO: Study the Adesto flash 'Manufacturer and Device ID' section

typedef struct {

 uint8_t manufacturer_id;

 uint8_t device_id_1;

 uint8_t device_id_2;

 uint8_t extended_device_id;

} adesto_flash_id_s;

// TODO: Implement the code to read Adesto flash memory signature

// TODO: Create struct of type 'adesto_flash_id_s' and return it

adesto_flash_id_s adesto_read_signature(void) {

 //adesto_flash_id_s data = { 0 };

 adesto_cs();

 {

 // Send opcode and read bytes

 // TODO: Populate members of the 'adesto_flash_id_s' struct

 }

Read the article in this link to understand how a mutex is created and used in a task

Purposely comment out the task creation of the task from Part 1: xTaskCreate(spi_task,...)

Study the code below which will attempt to read Adesto flash manufacturer ID in two tasks

simultaneously

Run the following code, and confirm that it fails

Be sure to initialize your SPI, and CS GPIO as needed

 adesto_ds();

 //return data;

}

void spi_task(void *p) {

 const uint32_t spi_clock_mhz = 24;

 ssp2__init(spi_clock_mhz);

 // From the LPC schematics pdf, find the pin numbers connected to flash memory

 // Read table 84 from LPC User Manual and configure PIN functions for SPI2 pins

 // You can use gpio__construct_with_function() API from gpio.h

 //

 // Note: Configure only SCK2, MOSI2, MISO2.

 // CS will be a GPIO output pin(configure and setup direction)

 todo_configure_your_ssp2_pin_functions();

 while (1) {

 adesto_flash_id_s id = adesto_read_signature();

 // TODO: printf the members of the 'adesto_flash_id_s' struct

 vTaskDelay(500);

 }

}

void main(void) {

 xTaskCreate(spi_task, ...);

 vTaskStartScheduler();}

Part 2: SPI Flash Interface with a Mutex

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/mutexes#bkmrk-design-pattern

After you confirm that there is a failure while two tasks try to use the SPI bus, resolve this by using a

Mutex:

Protect your ssp2__adesto_read_signature() a function such that two tasks will not be able to run

this function at the same time.

If implemented correctly, you will not see the error printf

Develop functionality to be able to read and write a "page" of the SPI flash memory. Here is a sample

code that you can reference to send a uint32_t address to the SPI flash with MSB first.

#include "FreeRTOS.h"

#include "task.h"

#include "ssp2_lab.h"

void spi_id_verification_task(void *p) {

 while (1) {

 const adesto_flash_id_s id = ssp2__adesto_read_signature();

 // When we read a manufacturer ID we do not expect, we will kill this task

 if (0x1F != id.manufacturer_id) {

 fprintf(stderr, "Manufacturer ID read failure\n");

 vTaskSuspend(NULL); // Kill this task

 }

 }

}

void main(void) {

 // TODO: Initialize your SPI, its pins, Adesto flash CS GPIO etc...

 // Create two tasks that will continously read signature

 xTaskCreate(spi_id_verification_task, ...);

 xTaskCreate(spi_id_verification_task, ...);

 vTaskStartScheduler();}

Part 3: Extra Credit

Saleae logic analyzer is a high quality USB analyzer, although you can find many copy cats as well.

After you install the software, do the following:

Hook up SCK, MOSI, and MISO to particular colors, and configure these colors by selecting the SPI

bus in logic analyzer software (on windows for example)

Setup a trigger

You have to setup a "trigger" which will trigger the logic analyzer data capture

The CS signal transitioning from HIGH to LOW is the right choice, however, the CS signal may

not be broken out on a pin header

To provide a trigger, what you can do is that you can SET and RESET two GPIO pins

simultaneously. One pin would be the real pin going to Adesto flash, and the second one is an

arbitrary pin which is available on your SJ2 pin header that you can connect to the logic analyzer

as a trigger

#include <stdint.h>

/**

 * Adesto flash asks to send 24-bit address

 * We can use our usual uint32_t to store the address

 * and then transmit this address over the SPI driver

 * one byte at a time

 */

void adesto_flash_send_address(uint32_t address) {

 (void) ssp2__exchange_byte((address >> 16) & 0xFF);

 (void) ssp2__exchange_byte((address >> 8) & 0xFF);

 (void) ssp2__exchange_byte((address >> 0) & 0xFF);}

Conclusion

Logic Analyzer Hints

Saleae logic analyzers are fast, but some others are not as fast. What this means is that you

should ensure that your speed of the analyzer is FASTER than the SPI speed that you set. If for

example your logic analyzer is only 6Mhz, then you should set your SPI speed slower than 6Mhz

?

Include all the code you developed in this lab

Turn in the screenshots of terminal output

Include Manufacturer ID

Logic Analyzer Screenshots

This lab requires logic analyzer screenshots. Visit SCE, CmpE294, to borrow Saleae logic

analyzer

Connect your pins to the SSP2 MISO, MOSI, SCK and CS signals to the logic analyzer, and

select the option in Saleae program to decode SPI frames

In your turned in Canvas artifacts, include the waveform of SPI retrieving manufacture ID

otherwise it will not capture the data correctly.

Requirements and what to turn in

