
Watchdogs

Task Resuming & Suspending

EventGroups

Lab Assignment: Watchdogs

Lesson Watch Dogs

Watchdog is a timer which can continuously check if there is any malfunction in the system operation

and perform certain actions to restore normal operation. Watchdogs are commonly found in embedded

system devices and provides self reliance to the system. It can take timely action to a critical failure in

the system thereby restoring the system to a safe state.

Operation of a standard watchdog timer

There are hardware and software watchdogs. Hardware watchdog awaits a signal/pulse from a

resource in the system during its timer period. If it receives the signal, it will reset itself and restart the

timer. This continues till the system operations are normal and stable. If the resource fails or there is

any fault in the system, the watchdog receives no indication during its timer period. Once the timer

period elapses, it can take certain actions to bring the system back to stable state. The action could be

resetting the system or any other action which restores normal operation.

Software watchdog is a task which monitors other tasks. Each task will report to the watchdog about its

Watchdogs

normal operation. If any of the tasks misbehave, then the watchdog can alert the user/system or take

corrective action to get the task back to normal state.

Ref: https://e2e.ti.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-

00-00-03-59/1538.fig2.PNG

?

https://e2e.ti.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-03-59/1538.fig2.PNG
https://e2e.ti.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-03-59/1538.fig2.PNG

A freeRTOS task that is currently running can be suspended by another task or by its own task. A

suspended task will not get any processing time from the micro-controller. Once suspended, it can only

be resumed by another task.

API which can suspend a single task is:

void vTaskSuspend(TaskHandle_t xTaskToSuspend);

API to suspend the scheduler is:

void vTaskSuspendAll(void);

API to resume a single task:

void vTaskResume(TaskHandle_t xTaskToResume);

API to resume the scheduler:

BaseType_t xTaskResumeAll(void);

Task Resuming & Suspending

Refer this link to explore more details on the API. https://www.freertos.org/a00130.html

?

Refer this link to explore more details on the API. https://www.freertos.org/a00134.html

?
Refer this link to explore more details. https://www.freertos.org/a00131.html

?

Refer this link to explore more details. https://www.freertos.org/a00135.html
?

Event group APIs can be used to monitor a set of tasks. A software watchdog in an embedded system

can make use of event groups for a group of tasks and notify/alert the user if any of the task

misbehaves.

Each task uses an event bit. After every successful iteration of the task, the bit can be set by the task to

mark completion. The event bits are then checked in the watchdog task to see if all the tasks are

running successfully. If any of the bits are not set, then watchdog task can alert about the task to the

user.

Below are the APIs that can be used. Refer to each of the API to understand how to use them in your

application.

xEventGroupCreate

xEventGroupCreateStatic

xEventGroupWaitBits

xEventGroupSetBits

xEventGroupSetBitsFromISR

xEventGroupClearBits

xEventGroupClearBitsFromISR

xEventGroupGetBits

xEventGroupGetBitsFromISR

xEventGroupSync

vEventGroupDelete

EventGroups

https://www.freertos.org/xEventGroupCreate.html
https://www.freertos.org/xEventGroupCreateStatic.html
https://www.freertos.org/xEventGroupWaitBits.html
https://www.freertos.org/xEventGroupSetBits.html
https://www.freertos.org/xEventGroupSetBitsFromISR.html
https://www.freertos.org/xEventGroupClearBits.html
https://www.freertos.org/xEventGroupClearBitsFromISR.html
https://www.freertos.org/xEventGroupGetBits.html
https://www.freertos.org/xEventGroupGetBitsFromISR.html
https://www.freertos.org/xEventGroupSync.html
https://www.freertos.org/vEventGroupDelete.html

Learn File I/O API to read and write data to the SD card

This requires a micro SD card that is formatted with FAT32

Design a simple application that communicates over the RTOS queue

Implement a "Software" Watchdog through FreeRTOS EventGroups API

You will be using a "file system" API to read (or write) a file. This is a third-party library and is not part of

the standard C library, and it is connected to the SD card using the SPI bus.

Please read this page for API details; here is the overall data flow which allows you to use high-level

API to read and write a file.

Lab Assignment: Watchdogs
Objective

Prerequisite Knowledge

File I/O

http://elm-chan.org/fsw/ff/00index_e.html
http://books.socialledge.com/uploads/images/gallery/2020-03-Mar/sj2-sw-layers.png

A "watchdog timer" is a hardware timer

It can count up or count down based on the implementation

The objective is that when it reaches a ceiling, then it will trigger CPU reset

1. Create a producer task that reads a sensor value every 1ms.

The sensor can be any input type, such as a light sensor, or an acceleration sensor

After collecting 100 samples (after 100ms), compute the average

Write average value every 100ms (avg. of 100 samples) to the sensor queue

Use medium priority for this task

2. Create a consumer task that pulls the data off the sensor queue

Use infinite timeout value during xQueueReceive API

Open a file (i.e.: sensor.txt), and append the data to an output file on the SD card

Save the data in this format: sprintf("%i, %i\n", time , light)"

Note that you can get the time using xTaskGetTickCount()

The sensor type is your choice (such as light or acceleration)

Watchdog

void main(void) {

 watchdog_enable(100ms);

 while (true) {

 pacemaker_logic();

 // If this function does not run within 100ms, the CPU will reset

 watchdog_checkin();

 }}

Lab

Part 0: Setup Producer and Consumer Task

Note that if you write and close a file every 100ms, it may be very inefficient, so try to come up

with a better method such that the file is only written once a second or so...

Also, note that periodically you may have to "flush" the file (or close it) otherwise data on the

SD card may be cached and the file may not get written

Use medium priority for this task

Note:

 By configuration, fatfs only support FAT32. Thus, any MicroSD larger than 32 GB needs to be

reformatted to FAT32.

Alternatively, you can modify the ffconfig.h to enable exFAT support.

#include "ff.h"

#include <string.h>

// Sample code to write a file to the SD Card

void write_file_using_fatfs_pi(void) {

 const char *filename = "file.txt";

 FIL file; // File handle

 UINT bytes_written = 0;

 FRESULT result = f_open(&file, filename, (FA_WRITE | FA_CREATE_ALWAYS));

 if (FR_OK == result) {

 char string[64];

 sprintf(string, "Value,%i\n", 123);

 if (FR_OK == f_write(&file, string, strlen(string), &bytes_written)) {

 } else {

 printf("ERROR: Failed to write data to file\n");

 }

 f_close(&file);

 } else {

 printf("ERROR: Failed to open: %s\n", filename);

 }

}

What you are designing is a software check-in system and thus emulating a "Software Watchdog".

1. At the end of the loop of each task, set a bit using FreeRTOS event group API.

At the end of each loop of the tasks, set a bit using the xEventGroupSetBits()

producer task should set bit1, consumer task should set bit2 etc.

You are expected to read about the FreeRTOS Event Group API yourself

2. Create a watchdog task that monitors the operation of the two tasks.

Use high priority for this task.

Use a task delay of 1 second, and wait for all the bits to set. If there are two tasks, wait for bit1,

and bit2 etc.

If you fail to detect the bits are set, that means that the other tasks did not reach the end of the

loop.

Print a message when the Watchdog task is able to verify the check-in of other tasks

Print an error message clearly indicating which task failed to check-in with the RTOS Event

Groups API

Part 1: Use FreeRTOS EventGroup API

void producer_task(void *params) {

 while(1) { // Assume 100ms loop - vTaskDelay(100)

 // Sample code:

 // 1. get_sensor_value()

http://books.socialledge.com/uploads/images/gallery/2020-03-Mar/sj2-sw-wdt.png
https://www.freertos.org/FreeRTOS-Event-Groups.html

1. Create a CLI to "suspend" and "resume" a task by name.

"task suspend task1" should suspend a task named "task1"

"task resume task2" should suspend a task named "task2"

 // 2. xQueueSend(&handle, &sensor_value, 0);

 // 3. xEventGroupSetBits(checkin)

 // 4. vTaskDelay(100)

 }

}

void consumer_task(void *params) {

 while(1) { // Assume 100ms loop

 // No need to use vTaskDelay() because the consumer will consume as fast as production rate

 // because we should block on xQueueReceive(&handle, &item, portMAX_DELAY);

 // Sample code:

 // 1. xQueueReceive(&handle, &sensor_value, portMAX_DELAY); // Wait forever for an item

 // 2. xEventGroupSetBits(checkin)

 }

}

void watchdog_task(void *params) {

 while(1) {

 // ...

 // vTaskDelay(200);

 // We either should vTaskDelay, but for better robustness, we should

 // block on xEventGroupWaitBits() for slightly more than 100ms because

 // of the expected production rate of the producer() task and its check-in

 if (xEventGroupWaitBits(...)) { // TODO

 // TODO

 }

 }

}

Part 2: Thoroughly test the Application

http://books.socialledge.com/books/embedded-drivers-real-time-operating-systems/page/sj2-board#bkmrk-cli-commands

2. Run the system, and under normal operation, you will see a file being saved with sensor data

values.

Collect the data over several seconds, and then verify by inserting the micro-SD card to your

computer

Plot the file data in Excel to demonstrate.

3. Suspend the producer task

The watchdog task should display a message and save relevant info to the SD card.

4. Observe the CPU utilization while your file is being saved

You should observe that the SD card task should utilize more CPU

What you created is a "software watchdog". This means that in an event when a task is stuck, or a task

is frozen, you can save relevant information such that you can debug at a later time.

Positive test case scenario with serial terminal indicating tasks are running normally

Suspension of a task, and then negative test case scenario with serial terminal indicating which task

failed to check-in

Data plot as mentioned in Part 2

All relevant source code (compiled and tested)

Please use TraceAlyzer to open this trace and inspect what is going on. The company offers "Academic

License" to view the attached file (click on the link above).

You may use any built-in libraries for this lab assignment such as a sensor API

?

Conclusion
What to turn in

FreeRTOS Trace

http://books.socialledge.com/attachments/1

