
SJ2 Development Environment

SJ2 Board

RTOS Trace

Standart Output

SJ2 Board and
Software

There are two major components of the development environment:

Compile a program for the ARM processor (such as the SJ2 board)

Compile a program for your host machine (your laptop)

Get started with the development environment by either:

1. Download and install Git and then clone the SJ2-C repository
2. Go to the SJ2-C repository and download the zip file

Most of the documentation related to the ARM compiler is captured in a few README files that you can

read here. We will not repeat the details here so please read the linked article. You can watch the

following video to get started:

Youtube: Compile project

Youtube: Scons build system

After setting up the SJ2-C development environment, try the following:

Compile the FreeRTOS sample project (lpc40xx_freertos)

SJ2 Development

Environment

Compile the SJ2 project

Hands-on

https://gitlab.com/sjtwo-c-dev/sjtwo-c
https://gitlab.com/sjtwo-c-dev/sjtwo-c
https://gitlab.com/sjtwo-c-dev/sjtwo-c
https://www.youtube.com/watch?v=--AL0VKzvU8&t=141s
https://www.youtube.com/watch?v=EbiCummaIM0&t=31s

Load it onto the processor

Modify the program (maybe printf statement), and load/run it again

Use a serial terminal program

Recommend: https://libhal.github.io/web-serial/

Type "help" at the terminal window. Also try "help <command name>"

Use all of the possible commands, and briefly skim through the code at handlers_general.c to get

an idea of how the code works for each command.

 Computer cannot recognize the SJ2 development board.

This error normally happens because of missing Silicon Lab driver.

Solution: check the install folder inside the development packet (...sjtwo-c-

master\installs\drivers). Please Install the driver, then start the computer and try to connect the

device again.

"No such file or directory " after running Scons command.

Please check, if the directory to the development folder has a name, which contain white space.

Solution: Don’t use directory with spaces.

Cannot recognize the command Scons.

This error normally happens when Scons is not installed, there are corruption during the

installation Scons packet. Sometimes, you need to upgrade the pip to latest version in order to

install Scons

Solution: Please check the pip version and upgrade the pip to latest version, then reinstall the

Scons if necessary. After installation, restart the computer and try the Scons command again.

"Sh 1 : python : not found" after running Scons command

It might appear when you have a multiple python versions, or you already had a python with

different management packet (For example, python is installed in your machine through

Anaconda, etc). As the result, the python path might not setup correctly.

Solution: Please check out these two article for your best option:

Troubleshooting

https://libhal.github.io/web-serial/

Window users: https://datatofish.com/add-python-to-windows-path/

Linux users: https://www.tutorialspoint.com/python3/python_environment.htm

To make it simple, You can also uninstall the python environment, and download the latest

python version here then reinstall it again (check in Add Python x.y to PATH at the beginning of

the installing option)

Python3 is present, and "python" is not available (such as new Mac OS)

Add the following lines to you ~/.zshrc

VMs are not recommended

While it is possible to pass the serial (COM) port to the VM, it can be really tricky.

Unless you have prior experience with serial port passthrough, using VMs for this class is

not recommended.

If you are on Windows and want to use Linux, use WSL1 instead of WSL2 or VMs.

x86 stands for instruction set for your laptop, which means that the project can be compiled and run on

your machine without having to compile, load, and run it on your hex project. Being able to compile a

project for your x86 host machine also provides the platform for being able to run unit-tests.

Youtube: x86 FreeRTOS Simulator

The real boot location is actually at entry_point.c

Initial values of RAM are copied from Flash memory's *data section

alias python=python3

alias pip=pip3export PATH=$PATH:"$(python3 -m site --user-base)/bin"

Compile x86 project

SJ2 Board Startup

https://datatofish.com/add-python-to-windows-path/
https://datatofish.com/add-python-to-windows-path/
https://www.tutorialspoint.com/python3/python_environment.htm
https://www.python.org/downloads/
https://www.youtube.com/watch?v=WIOJ-EuA3V4&t=12s

See startup__initialize_ram() at startup.c

ARM core's floating point unit, and interrupts are initialized

Clock and a timer API is initialized

Peripherals and sensors are initialized

Finally, call to main() is made

TODO

The development environment contains built-in code formatting tool. Each time you compile, it will first

reformat the source code according to preset Google coding format.

Unit-Test Framework

Extras!

SJ2 board has lots of in-built sensors and a 128*64 OLED. It has 96kb of RAM and 120MHZ CPU.

SJ2 Board

Board Layout

http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-(1).png

Normally, the NMI pin is not asserted, and when the board is powered on, it will boot straight to your

application space which is where you flashed your program.

When the NMI pin is asserted (through the RTS signal of the USB to the serial port), and Reset is

toggled, then the board will boot to a separate 8KB flash memory where NXP wrote their own

bootloader. This program communicates with flash.py script to load your program to the application

memory space.

Board Reset and Boot System

http://books.socialledge.com/uploads/images/gallery/2020-01-Jan/sj2-block-diagram.png

1. UART Pin Mapping for SJ-2 Board

SJ2 UART's TXD RXD Multiplexed

UART 0 P0.2 P0.3
Bootloader, Serial

Debug Output

SJ2 Board Pins

http://books.socialledge.com/uploads/images/gallery/2020-02-Feb/sj2-pin-header.png

 P0.0 P0.1 CAN1,I2C1

UART 1 P0.15 P0.16 SSP0

 P2.0 P2.1 PWM1

UART 2 P0.10 P0.11 I2C2

 P2.8 P2.9 Wi-Fi

UART 3 P0.0 P0.1 CAN1,I2C1

 P0.25 P0.26 ADCx

 P4.28 P4.29 Wi-Fi

UART 4 P0.22 P2.9

 P1.29 P2.9

2. SSP/SPI Pin Mapping for SJ-2 Board

SJ2

SPI's
SCKMISOMOSI

SSP0P0.15P0.17P0.18

 P1.20P1.23P1.24

SSP1P0.7P0.8P0.9

SSP2P1.19P1.18P1.22

 P1.31P1.18P1.22

3. I2C Pin Mapping for SJ-2 Board

SJ2

I2C's
SDASCLMultiplexed

I2C

0
P1.30P1.31ADCx

I2C

1
P0.0P0.1

UART0,

UART3,

CAN1

I2C

2
P0.10P0.11UART2

 P1.15P4.29

4. CAN Pin Mapping for SJ-2 Board

SJ2

CAN's
RD TD Multiplexed

CAN1P0.0P0.1

UART0,

I2C1,

UART3

 P0.0P0.22

CAN2P2.7P2.8

A pin's functionality may be selected based on your system design. Here are a few examples:

Select UART3 on P4.28 and P4.29 :

Pin functionality Selection

#include "gpio.h"

void select_uart3_on_port4(void) {

 // Reference "Table 84" at "LPC408x_7x User Manual.pdf"

 gpio__construct_with_function(GPIO__PORT_4, 28, GPIO__FUNCTION_2); // P4.28 as TXD3

 gpio__construct_with_function(GPIO__PORT_4, 29, GPIO__FUNCTION_2); // P4.29 as RXD3}

A pin function should be set based on one of the 8 possibilities. Here is an example again that sets

P0.0 and P0.1 to UART3 (note that the 010 corresponds to GPIO__FUNCTION_2). Of course you can

also configure P0.0 and P0.1 as UART0 pins by using GPIO__FUNCTION_4

This section focuses on the C software framework, and not the C++ sample project.

CLI stands for Command Line Interface. The SJ2 C framework includes a way to interact with the board

through a CLI command utilizing a CLI task. You can and should add more commands as needed to

provide debugging and interaction capability with your board.

You can add your own CLI command by following the steps below:

Step 1: Declare your CLI handler function, the parameters of this function are:

app_cli__argument_t : This is not utilized in the SJ2 project, and will be NULL

sl_string_s : There is a powerful string library type. The string is set to parameters of a CLI

command, so if the command name is taskcontrol and user inputs taskcontrol suspend led ,

then the string value will be set to suspend led with the command name removed, see sl_string.h

#include "gpio.h"

void select_uart3_on_port0(void) {

 gpio__construct_with_function(GPIO__PORT_0, 0, GPIO__FUNCTION_2); // P0.0 as TXD3

 gpio__construct_with_function(GPIO__PORT_0, 1, GPIO__FUNCTION_2); // P0.1 as RXD3}

Software Reference

CLI Commands

http://books.socialledge.com/uploads/images/gallery/2020-02-Feb/pin_config.png
https://gitlab.com/sjtwo-c-dev/sjtwo-c

for more information

cli_output : This is a function pointer that you should use to output the data back to the CLI

Step 2: Add your CLI handler

Step 3: Handle your CLI command

// TODO: Add your CLI handler function declaration to 'cli_handlers.h'

app_cli_status_e cli__your_handler(app_cli__argument_t argument, sl_string_s user_input_minus_command_name,

 app_cli__print_string_function cli_output);

// TODO: Declare your CLI handler struct, and add it at 'sj2_cli.c' inside the sj2_cli__init() function

void sj2_cli__init(void) {

 // ...

 static app_cli__command_s your_cli_struct = {.command_name = "taskcontrol",

 .help_message_for_command = "help message",

 .app_cli_handler = cli__your_handler};

 // TODO: Add the CLI handler:

 app_cli__add_command_handler(&sj2_cli_struct, &your_cli_struct);

}

// TODO: Add your CLI handler function definition to 'handlers_general.c' (You can also create a new *.c file)

app_cli_status_e cli__your_handler(app_cli__argument_t argument, sl_string_s user_input_minus_command_name,

 app_cli__print_string_function cli_output) {

 void *unused_cli_param = NULL;

 // sl_string is a powerful string library, and you can utilize the sl_string.h API to parse parameters of a command

 // Sample code to output data back to the CLI

 sl_string_s s = user_input_minus_command_name; // Re-use a string to save memory

 sl_string__printf(s, "Hello back to the CLI\n");

 cli_output(unused_cli_param, sl_string__c_str(s));

 return APP_CLI_STATUS__SUCCESS;

}

TODO

At the env_arm file, there are a couple of lines you can comment out to save about 18K of flash space.

This space is not significant enough when you realize the fact that the LPC controller has 512K of flash

ROM space, but it increases a few seconds of programming time each and every time you program.

Layout a plan or design of something that is laid out More (Definitions, Synonyms, Translation)

// TODO: Now, when you flash your board, you will see your 'taskcontrol' as a CLI command

Platform Glue

Newlib and floating point printf and scanf

 LINKFLAGS=[

 # Use hash sign to comment out the line

 # This will disable ability to do printf and scanf of %f (float)

 # "-u", "_printf_float", # "-u", "_scanf_float",

FreeRTOS trace is a third party library developed by Percepio; please check them out here. What you

can do is to capture the RTOS trace on the micro-sd card on your SJ2 board which you can later plot

out to be able to visualize everything that the RTOS is trying to do.

To get started, you first need to install a Windows trace file viewer. This will open up the trace file saved

by the SJ2 board for you to visualize all of the data. You can evaluate the product or get student license

for free. Please proceed by visiting the following link:

https://percepio.com/downloadform/

Now that you have installed the Percepio Trace, it is time to configure the SJ2 software to generate the

trace. This is super easy to do:

1. First, make sure you have a micro SD card installed on the SJ2 board and formatted in FAT32

format
2.

Go to FreeRTOSConfig.h and change this macro #define configENABLE_TRACE_ON_SD_CARD 0

That is pretty much it... you can now compile, and flash the new application and the software will save a

file called trace.psf onto the SD card's file system. If you do not see the SD Card blinky light a few

times each second, you have likely not loaded the correct application onto the board.

RTOS Trace
Overview

Install

Configure

https://percepio.com/tz/freertostrace/
https://percepio.com/downloadform/

FreeRTOS Trace can be enabled at FreeRTOS_config.h You can open up an example trace from this

Gitlab link which has a pre-existing RTOS trace file generated by the SJ2 board.

There is no general need on how to use the API on the SJ2 board related to the RTOS trace, and the

bulk of the "usage" is actually opening up the trace file in Percepio Tracalyzer program. The one thing

you could do is "printf" trace data that can be visualized in the trace.

Usage

void trace_print(void) {

 traceString trace_channel = xTraceRegisterString("trace channel description");

 vTracePrintF(trace_channel, "%d: %d", 1, 234);

}

https://github.com/ChrisFSF/CMPE146-MP3-project/tree/master/MP3_Trace_test_result

This article provides useful information about how the standard output is handled on the SJ2 platform.

The standard output is connected to UART0. In a bare metal system without the operating system

providing means of outputting data to a console, responsibility lies on the developer to connect

printf() to your way of outputting data.

In GCC, the function _write() is invoked for all data output related to file handles. On the SJ2

platform, the function is implemented to output data to UART0, which is connected to the USB to serial

chip that is interfaced to a computer (such as windows, linux) to see the serial console.

system_calls.c can be referenced to see the full implementation.

When fprintf(stderr, "...") is utilized, the system_calls.c does not deposit data to an RTOS

Standart Output

printf

int _write(int file_descriptor, const char *ptr, int bytes_to_write) {

 // ...

 if (rtos_is_running && transmit_queue_enabled && !is_standard_error) {

 system_calls__queued_put(ptr, bytes_to_write);

 } else {

 system_calls__polled_put(ptr, bytes_to_write);

 }

 return bytes_to_write;}

fprintf

queue in which case the data would have been sent out "later" depending on the speed of the UART.

The stderr is the key that differentiate polled vs. queued data output.

When the stderr is utilized, this "file handle" triggers the branch statement to output the data using

polled UART driver. This means that the CPU cycles will be compromised, and we will waste cycles

waiting for data to be sent, so this should not be used in "production code".

Inside of an interrupt, you never want to "block" using any RTOS API. If we use standard printf() , it

may try to enqueue the data to be sent out of the UART0 peripheral, and therefore may crash the

system when the UART transmission queue becomes full (as it will then try to sleep on the queue to be

not full). Because of this, fprintf(stderr, "...") may be utilized inside of an ISR as it would not

enqueue the data or try to "block" through the RTOS API.

In "production intent" code, there should be no printfs inside of an ISR.

printf inside of an ISR

