

Typically, C design pattern to create a re-usable module is performed like so:

On the other hand, C++ for the same module would be:

Code analysis

C vs. C++

typedef struct {

 int target_ms;

 int interval_ms;

} timer_t;

void timer_start(timer_t *t, uint32_t interval);

void timer_stop(timer_t *t);

bool timer_expired(timer_t *t);

class timer

{

 public:

 void start(uint32_t interval);

 void stop();

 bool expired();

 private:

 int target_ms;

 int interval_ms;};

void main(void)

{

 /**

 * C convention:

 * object_method(&obj)

 * Then you pass the object as the first parameter to the methods to "operate on" this object

 */

 timer_t t;

 timer_start(&t, 1000);

 timer_stop (&t);

 /**

 * C++ convention:

 * obj.method()

 *

 * C++ automatically passes the object pointer, known as the "this" pointer to the method

 * In reality, the language and the compiler is invoking the methods just like C:

 * timer::start(&obj, 1000);

 */

 timer t;

 t.start(1000);

 t.stop();}

Revision #1

Created 6 years ago by Preet Kang

Updated 1 year ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

