LPC40xx MCU Memory Map

What is a Memory Map

A memory map is a layout of how the memory maps to some set of information. With respect to embedded
systems, the memory map we are concerned about maps out where the Flash (ROM), peripherals, interrupt
vector table, SRAM, etc are located in address space.

Memory mapped 10

Memory mapped IO is a means of mapping memory address space to devices external (I0) to the CPU, that is
not memory.

For example (assuming a 32-bit system)

¢ Flash could be mapped to address 0x00000000 to 0x00100000 (1 Mbyte range)

e GPIO port could be located at address 0x1000000 (1 byte)

e Interrupt vector table could start from OxFFFFFFFF and run backwards through the memory space
e SRAM gets the rest of the usable space (provided you have enough SRAM to fill that area)

It all depends on the CPU and the system designed around it.

Port Mapped 10

Port mapped 10 uses additional signals from the CPU to qualify which signals are for memory and which are for
[0. On Intel products, there is a (~M/IO) pin that is LOW when selecting MEMORY and HIGH when it is
selecting 10.

The neat thing about using port mapped IO, is that you don't need to sacrifice memory space for 10, nor do you
need to decode all 32-address lines. You can limit yourself to just using 8-bits of address space, which limits
you to 256 device addresses, but that may be more than enough for your purposes.

AlS 4K MEMORY

(=

Ald A=
Al3] cs
Al2 ALl — All
i oo
1
i
_ - AD AD D7
WR MWEN
O] wr
10/ M c D)
WEMR
RO

Figure 2. Address Decoding with port map

(http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html)

LPC40xx memory map

http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html

UM10562

Chapter 2: LPC408x/407x Memory map

Rev. 3 — 12 March 2014 User manual

2.1 Memory map and peripheral addressing

The ARM Cortex-M4 processor has a single 4 GB address space. The following table
shows how this space is used on the LPC408x/407x.

Table 3. Memory usage and details
Address range General Use Address range details and description
0x0000 0000te On-chip non-volatile 0x0000 0000 - 0x0007 FFFF For devices with 512 kB of flash memary.
Ox1FFF FFFF memory 0x0000 0000 - 0x0003 FFFF For devices with 256 kB of flash memory.
0x0000 0000 - 0x0001 FFFF For devices with 128 kB of flash memoary.
On-chip SRAM 0x1000 0000 - 0x1000 FFFF For devices with 64 kB of Main SRAM.

0x1000 0000 - 0x1000 7FFF For devices with 32 kB of Main SRAM.
Boot ROM Ox1FFF 0000 - 0x1FFF 7FFF 8 kB Boot ROM with flash services.
Driver ROM O0x1FFF 8000 - Ox1FFF 1FFF 16 kB Driver ROM

0x2000 0000to On-chip SRAM 0x2000 0000 - 0x2000 1FFF Peripheral SRAM - bank O (first 8 kB)

O0x3FFF FFFF ﬁﬁ'ﬂéfiﬁiﬁ“ 0x2000 2000 - 0x2000 3FFF Peripheral SRAM - bank 0 (second 8 kB)
0x2000 4000 - 0x2000 7FFF Peripheral SRAM - bank 1 (16 kB)

AHB peripherals 0x2008 0000 - 0x200B FFFF See Section 2.3.1 for details
SPIF| buffer space 0x2800 0000 - 0x28FF FFFF SPIFI memory mapped access space

0x4000 0000to APEB Peripherals Ox4000 0000 - 0x4007 FFFF APBO Peripherals, up to 32 peripheral blocks of

0x7FFF FFFF 16 kB each.

Ox4008 0000 - 0x400F FFFF APB1 Peripherals, up to 32 peripheral blocks of
16 kB each.

0xB000 0000to Off-chip Memory via Four static memory chip selects:

OxDFFF FFFF "g:ni’:::?a' Memory 08000 0000 - 0x83FF FFFF Static memory chip select 0 (up to 64 MB)L!]
0x9000 0000 - 0x93FF FFFF Static memory chip select 1 (up to 64 MB)L2l
0x9800 0000 - 0x9BFF FFFF Static memory chip select 2 (up to 64 MB)
0x9CO00 0000 - 0x9FFF FFFF Static memory chip select 3 (up to 64 MB)
Four dynamic memaory chip selects:
0xA000 0000 - OxAFFF FFFF Dynamic memory chip select 0 (up to 256MB)
0xB000 0000 - 0xBFFF FFFF Dynamic memory chip select 1 (up to 256MB)
0xC000 0000 - 0xCFFF FFFF Dynamic memory chip select 2 (up to 256MB)
0xDO00 0000 - 0xDFFF FFFF Dynamic memory chip select 3 (up to 256MB)

0xEQ0O 0000 to Cortex-M4 Private OxEO000 0000 - OxEOOF FFFF Cortex-M4 related functions, includes the NVIC

0xEQOF FFFF Peripheral Bus and System Tick Timer.

Figure 3. LPC40xx Memory Map

From this you can get an idea of which section of memory space is used for what. This can be found in the
UM10562 LPC40xx user manual. If you take a closer look you will see that very little of the address space is
actually taken up. With up to 4 billion+ address spaces (because 2732 is a big number) to use you have a lot of
free space to spread out your 10 and peripherals.

Reducing the number of lines needed to decode 10

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-12-at-4.27.57-PM.png

The LPC40xx chips, to reduce bus line count, make all the peripherals 32-bit word aligned. Which means you

must grab 4-bytes at a time. You cannot grab a single byte (8-bits) or a half-byte (16-bits) from memory. This
eliminates the 2 least significant bits of address space.

Accessing 10 using Memory Map in C

Please read the following code snippet. This is runnable on your system now. Just copy and paste it into your
main.c file.

/*
The goal of this software is to set the GPIO pin P1.0 to
low then high after some time. Pin P1.0 is connected to an LED.
The address to set the direction for port 1 GPIOs is below:
DIR1 = 0x20098020
The address to set a pin in port 1 is below:
PIN1 = 0x20098034
*/
#include <stdint.h>

volatile uint32 t * const DIR1

(uint32 t *)(0x20098020);
(uint32 t *) (0x20098034);

volatile uint32 t * const PIN1

int main(void)

{

// Set Oth bit, setting Pin 0 of Port 1 to an output pin
(*DIR1) |= (1 << 0);
// Set Oth bit, setting Pin 0 of Port 1 to high
(*PIN1) |= (1 << 0);
// Loop for a while (volatile is needed!)
for(volatile uint32 t i = 0; i < 0x01000000; i++);
// Clear 0th bit, setting Pin 0 of Port 1 to low
(*PIN1) &= ~(1 << 0);
// Loop forever
while(1);

return 0;}

2 Vvolatile keyword tells the compiler not to optimize this variable out, even if it seems useless

Using the LPC40xx.h

The above is nice and it works, but it's a lot of work. You have to go back to the user manual to see which
addresses are for what register. There must be some better way!!

const keyword tells the compiler that this variable cannot be modified

Notice “const" placement and how it is placed after the uint32_t *. This is because we want to make
sure the pointer address never changes and remains constant, but the value that it references should
be modifiable.

Take a look at the Ipc40xx.h file, which It is located in the sjtwo-c/projects/lpc40xx freertos/lpc40xx.h .
Here you will find definitions for each peripheral memory address in the system.

Let's say you wanted to port the above code to something a bit more structured:

e Open up "Ipc40xx.h"
e Search for "GPIO"

o You will find a struct with the name LPC_GPIO_TypeDef.
e Now search for "LPC_GPIO_TypeDef" with a #define in the same line.
-OYou will see that LPC_GPIO_TypeDef is a pointer of these structs

o
? o
o
o

O

#define LPC_GPIOO
#define LPC GPIO1
#define LPC GPI02
#define LPC GPIO03
#define LPC_GPIO4

((LPC_GPIO TypeDef
((LPC_GPIO TypeDef
((LPC_GPIO TypeDef
((LPC_GPIO TypeDef
((LPC_GPIO TypeDef

*)
*)
*)
*)
*)

LPC_GPI0O BASE
LPC_GPIO1 BASE
LPC_GPI02 BASE
LPC_GPI03 BASE
LPC_GPI04 BASE

)
)
)
)

)

e \We want to use LPC_GPIO1 since that corresponds to the GPIO port 1.
e If you inspect LPC_GPIO_TypeDef, you can see the members that represent register DIR and PIN

e You can now access DIR and PIN registers in the following way:

#include "1pc40xx.h"

int main(void)

{

// Set Oth bit, setting Pin 0 of Port 1 to an output pin
LPC GPIO1->DIR |= (1 << 0);

//// Set 0th bit, setting Pin 0 of Port 1 to high

LPC GPIO1->PIN |= (1 << 0);

//// Loop for a while (volatile is needed!)

for(volatile uint32 t 1 = 0; 1 < 0x01000000; i++);

//// Clear Oth bit, setting Pin 1.0 to low

LPC_GPIO1->PIN &= ~(1 << 0);
//// Loop forever
while(1);

return 0;}

At first this may get tedious, but once you get more experience, you won't open the I[pc40xx.h file very often.
This is the preferred way to access registers in this course and in industry.

On occasions, the names of registers in the user manual are not exactly the same in this file.

Revision #13
Created 7 years ago by Admin
Updated 3 years ago by vidushi

http://books.socialledge.com/user/1
http://books.socialledge.com/user/14

