
A memory map is a layout of how the memory maps to some set of information. With respect to embedded 
systems, the memory map we are concerned about maps out where the Flash (ROM), peripherals, interrupt 
vector table, SRAM, etc are located in address space.

Memory mapped IO is a means of mapping memory address space to devices external (IO) to the CPU, that is 
not memory. 

Flash could be mapped to address 0x00000000 to 0x00100000 (1 Mbyte range)
GPIO port could be located at address 0x1000000 (1 byte)
Interrupt vector table could start from 0xFFFFFFFF and run backwards through the memory space
SRAM gets the rest of the usable space (provided you have enough SRAM to fill that area)

It all depends on the CPU and the system designed around it.

Port mapped IO uses additional signals from the CPU to qualify which signals are for memory and which are for 
IO. On Intel products, there is a (~M/IO) pin that is LOW when selecting MEMORY and HIGH when it is 
selecting IO.

The neat thing about using port mapped IO, is that you don't need to sacrifice memory space for IO, nor do you 
need to decode all 32-address lines. You can limit yourself to just using 8-bits of address space, which limits 
you to 256 device addresses, but that may be more than enough for your purposes.

 

LPC40xx MCU Memory Map
What is a Memory Map

Memory mapped IO

For example (assuming a 32-bit system)

Port Mapped IO



Figure 2. Address Decoding with port map 

(http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html)

LPC40xx memory map

http://www.dgtal-sysworld.co.in/2012/04/memory-intercaing-to-8085.html


Figure 3. LPC40xx Memory Map

From this you can get an idea of which section of memory space is used for what. This can be found in the 
UM10562 LPC40xx user manual. If you take a closer look you will see that very little of the address space is 
actually taken up. With up to 4 billion+ address spaces (because 2^32 is a big number) to use you have a lot of 
free space to spread out your IO and peripherals.

Reducing the number of lines needed to decode IO

http://books.socialledge.com/uploads/images/gallery/2020-09-Sep/Screen-Shot-2020-09-12-at-4.27.57-PM.png


The LPC40xx chips, to reduce bus line count, make all the peripherals 32-bit word aligned. Which means you 
must grab 4-bytes at a time. You cannot grab a single byte (8-bits) or a half-byte (16-bits) from memory. This 
eliminates the 2 least significant bits of address space.

Please read the following code snippet. This is runnable on your system now. Just copy and paste it into your 
main.c file.

Accessing IO using Memory Map in C

/*

    The goal of this software is to set the GPIO pin P1.0 to

    low then high after some time. Pin P1.0 is connected to an LED.

    The address to set the direction for port 1 GPIOs is below:

        DIR1 = 0x20098020

    The address to set a pin in port 1 is below:

        PIN1 = 0x20098034

*/

#include <stdint.h>

volatile uint32_t * const DIR1 = (uint32_t *)(0x20098020);

volatile uint32_t * const PIN1 = (uint32_t *)(0x20098034);

int main(void)

{

    // Set 0th bit, setting Pin 0 of Port 1 to an output pin

    (*DIR1) |= (1 << 0);

    // Set 0th bit, setting Pin 0 of Port 1 to high

    (*PIN1) |= (1 << 0);

    // Loop for a while (volatile is needed!)

    for(volatile uint32_t i = 0; i < 0x01000000; i++);

    // Clear 0th bit, setting Pin 0 of Port 1 to low

    (*PIN1) &= ~(1 << 0);

    // Loop forever

    while(1);

  return 0;}

volatile keyword tells the compiler not to optimize this variable out, even if it seems useless?



The above is nice and it works, but it's a lot of work. You have to go back to the user manual to see which 
addresses are for what register. There must be some better way!!

Take a look at the lpc40xx.h file, which It is located in the sjtwo-c/projects/lpc40xx_freertos/lpc40xx.h . 
Here you will find definitions for each peripheral memory address in the system.

Let's say you wanted to port the above code to something a bit more structured:

Open up "lpc40xx.h" 
Search for "GPIO" 

You will find a struct with the name LPC_GPIO_TypeDef.
Now search for "LPC_GPIO_TypeDef" with a #define in the same line.
You will see that LPC_GPIO_TypeDef is a pointer of these structs 

#define LPC_GPIO0 ((LPC_GPIO_TypeDef *) LPC_GPIO0_BASE )

#define LPC_GPIO1 ((LPC_GPIO_TypeDef *) LPC_GPIO1_BASE )

#define LPC_GPIO2 ((LPC_GPIO_TypeDef *) LPC_GPIO2_BASE )

#define LPC_GPIO3 ((LPC_GPIO_TypeDef *) LPC_GPIO3_BASE )

#define LPC_GPIO4 ((LPC_GPIO_TypeDef *) LPC_GPIO4_BASE )
We want to use LPC_GPIO1 since that corresponds to the GPIO port 1.
If you inspect LPC_GPIO_TypeDef, you can see the members that represent register DIR and PIN
You can now access DIR and PIN registers in the following way:

const keyword tells the compiler that this variable cannot be modified

?

Notice "const" placement and how it is placed after the uint32_t *. This is because we want to make 
sure the pointer address never changes and remains constant, but the value that it references should 
be modifiable. 

?

Using the LPC40xx.h

#include "lpc40xx.h"

int main(void)

{

    // Set 0th bit, setting Pin 0 of Port 1 to an output pin

    LPC_GPIO1->DIR |= (1 << 0);

    //// Set 0th bit, setting Pin 0 of Port 1 to high

    LPC_GPIO1->PIN |= (1 << 0);

    //// Loop for a while (volatile is needed!)

    for(volatile uint32_t i = 0; i < 0x01000000; i++);

    //// Clear 0th bit, setting Pin 1.0 to low



At first this may get tedious, but once you get more experience, you won't open the lpc40xx.h file very often. 
This is the preferred way to access registers in this course and in industry.

    LPC_GPIO1->PIN &= ~(1 << 0);

    //// Loop forever

    while(1);

    return 0;}

On occasions, the names of registers in the user manual are not exactly the same in this file.

?

Revision #13 

Created 7 years ago by Admin

Updated 3 years ago by vidushi

http://books.socialledge.com/user/1
http://books.socialledge.com/user/14

