
SJ2 board has lots of in-built sensors and a 128*64 OLED. It has 96kb of RAM and 120MHZ CPU.

SJ2 Board

Board Layout

http://books.socialledge.com/uploads/images/gallery/2021-02-Feb/rtosbook-(1).png

Normally, the NMI pin is not asserted, and when the board is powered on, it will boot straight to your application
space which is where you flashed your program.

When the NMI pin is asserted (through the RTS signal of the USB to the serial port), and Reset is toggled, then
the board will boot to a separate 8KB flash memory where NXP wrote their own bootloader. This program

communicates with flash.py script to load your program to the application memory space.

Board Reset and Boot System

http://books.socialledge.com/uploads/images/gallery/2020-01-Jan/sj2-block-diagram.png

1. UART Pin Mapping for SJ-2 Board

SJ2 UART's TXD RXD Multiplexed

UART 0 P0.2 P0.3
Bootloader, Serial Debug
Output

 P0.0 P0.1 CAN1,I2C1

UART 1 P0.15 P0.16 SSP0

SJ2 Board Pins

http://books.socialledge.com/uploads/images/gallery/2020-02-Feb/sj2-pin-header.png

 P2.0 P2.1 PWM1

UART 2 P0.10 P0.11 I2C2

 P2.8 P2.9 Wi-Fi

UART 3 P0.0 P0.1 CAN1,I2C1

 P0.25 P0.26 ADCx

 P4.28 P4.29 Wi-Fi

UART 4 P0.22 P2.9

 P1.29 P2.9

2. SSP/SPI Pin Mapping for SJ-2 Board

SJ2 SPI's SCK MISO MOSI

SSP0 P0.15 P0.17 P0.18

 P1.20 P1.23 P1.24

SSP1 P0.7 P0.8 P0.9

SSP2 P1.19 P1.18 P1.22

 P1.31 P1.18 P1.22

3. I2C Pin Mapping for SJ-2 Board

SJ2 I2C's SDA SCL Multiplexed

I2C 0 P1.30 P1.31 ADCx

I2C 1 P0.0 P0.1 UART0, UART3, CAN1

I2C 2 P0.10 P0.11 UART2

 P1.15 P4.29

4. CAN Pin Mapping for SJ-2 Board

SJ2 CAN's RD TD Multiplexed

CAN1 P0.0 P0.1 UART0, I2C1, UART3

 P0.0 P0.22

CAN2 P2.7 P2.8

A pin's functionality may be selected based on your system design. Here are a few examples:

Pin functionality Selection

Select UART3 on P4.28 and P4.29 :

A pin function should be set based on one of the 8 possibilities. Here is an example again that sets P0.0 and

P0.1 to UART3 (note that the 010 corresponds to GPIO__FUNCTION_2). Of course you can also configure

P0.0 and P0.1 as UART0 pins by using GPIO__FUNCTION_4

This section focuses on the C software framework, and not the C++ sample project.

CLI stands for Command Line Interface. The SJ2 C framework includes a way to interact with the board
through a CLI command utilizing a CLI task. You can and should add more commands as needed to provide
debugging and interaction capability with your board.

You can add your own CLI command by following the steps below:

#include "gpio.h"

void select_uart3_on_port4(void) {

 // Reference "Table 84" at "LPC408x_7x User Manual.pdf"

 gpio__construct_with_function(GPIO__PORT_4, 28, GPIO__FUNCTION_2); // P4.28 as TXD3

 gpio__construct_with_function(GPIO__PORT_4, 29, GPIO__FUNCTION_2); // P4.29 as RXD3}

#include "gpio.h"

void select_uart3_on_port0(void) {

 gpio__construct_with_function(GPIO__PORT_0, 0, GPIO__FUNCTION_2); // P0.0 as TXD3

 gpio__construct_with_function(GPIO__PORT_0, 1, GPIO__FUNCTION_2); // P0.1 as RXD3}

Software Reference

CLI Commands

http://books.socialledge.com/uploads/images/gallery/2020-02-Feb/pin_config.png
https://gitlab.com/sjtwo-c-dev/sjtwo-c

Step 1: Declare your CLI handler function, the parameters of this function are:

app_cli__argument_t : This is not utilized in the SJ2 project, and will be NULL

sl_string_s : There is a powerful string library type. The string is set to parameters of a CLI command, so

if the command name is taskcontrol and user inputs taskcontrol suspend led , then the string value will

be set to suspend led with the command name removed, see sl_string.h for more information

cli_output : This is a function pointer that you should use to output the data back to the CLI

Step 2: Add your CLI handler

Step 3: Handle your CLI command

// TODO: Add your CLI handler function declaration to 'cli_handlers.h'

app_cli_status_e cli__your_handler(app_cli__argument_t argument, sl_string_s user_input_minus_command_name,

 app_cli__print_string_function cli_output);

// TODO: Declare your CLI handler struct, and add it at 'sj2_cli.c' inside the sj2_cli__init() function

void sj2_cli__init(void) {

 // ...

 static app_cli__command_s your_cli_struct = {.command_name = "taskcontrol",

 .help_message_for_command = "help message",

 .app_cli_handler = cli__your_handler};

 // TODO: Add the CLI handler:

 app_cli__add_command_handler(&sj2_cli_struct, &your_cli_struct);

}

// TODO: Add your CLI handler function definition to 'handlers_general.c' (You can also create a new *.c file)

app_cli_status_e cli__your_handler(app_cli__argument_t argument, sl_string_s user_input_minus_command_name,

 app_cli__print_string_function cli_output) {

 void *unused_cli_param = NULL;

 // sl_string is a powerful string library, and you can utilize the sl_string.h API to parse parameters of a command

 // Sample code to output data back to the CLI

 sl_string_s s = user_input_minus_command_name; // Re-use a string to save memory

 sl_string__printf(s, "Hello back to the CLI\n");

TODO

At the env_arm file, there are a couple of lines you can comment out to save about 18K of flash space. This
space is not significant enough when you realize the fact that the LPC controller has 512K of flash ROM space,
but it increases a few seconds of programming time each and every time you program.

Layout a plan or design of something that is laid out More (Definitions, Synonyms, Translation)

 cli_output(unused_cli_param, sl_string__c_str(s));

 return APP_CLI_STATUS__SUCCESS;

}

// TODO: Now, when you flash your board, you will see your 'taskcontrol' as a CLI command

Platform Glue

Newlib and floating point printf and scanf

 LINKFLAGS=[

 # Use hash sign to comment out the line

 # This will disable ability to do printf and scanf of %f (float)

 # "-u", "_printf_float", # "-u", "_scanf_float",

Revision #23

Created 5 years ago by Preet Kang

Updated 3 years ago by Huy Nguyen

/user/8
/user/15

