
The objective of this lesson is to understand UART, and use two boards and setup UART communication
between them.

UART stands for Universal Asynchronous Receiver-Transmitter.

Figure 1. UART connection between two devices.

For Universal Asynchronous Receiver Transmitter. There is one wire for transmitting data (TX), and one wire to
receive data (RX). It is asynchronous because there is no clock line between two UART hosts.

A common parameter is the baud rate known as "bps" which stands for bits per second. If a transmitter is
configured with 9600bps, then the receiver must be listening on the other end at the same speed. Using the

9600bps example, each bit time is 1 / 9600 = 104uS . That means that if a transmitter wants to transmit a
byte, it must do so by latching one bit on the wire, and then waiting 104uS before another bit is latched on the
wire.

If you were to take a GPIO, and emulate UART at 9600 to send out a byte of data, it would look like this:

UART
Objective

UART

BAUD Rate

UART is a serial communication, so bits must travel on a single wire. If you wish to send a 8-bit byte (uint8_t)
 over UART, the byte is enclosed within a start and a stop bit. Therefore, to transmit a byte, it would require 2-

bits of overhead; this 10-bit of information is called a UART frame. Let's take a look at how the character 'A'

is sent over UART. In ASCII table, the character 'A' has the value of 65 , which in binary is: 0100_0001 . If
you inform your UART hardware that you wish to send this data at 9600bps, here is how the frame would
appear on an oscilloscope :

Figure 2. UART Frame sending letter 'A'

It would normally not make sense to use the main processor (such as NXP LPC40xx) to send data on a wire
one bit at a time, thus there are peripherals, or UART co-processor whose job is to solely send and receive
data on UART pins without having to tax the main processor.

A micrcontroller can have multiple UART peripherals. Typically, the UART0 peripheral is interfaced to with a
USB to serial port converter which allows users to communicate between the computer and microcontroller.
This port is used to program your microcontroller.

// Assumes GPIO is a memory that can set level of a Port/Pin (psuedocode)

void uart_send_at_9600bps(const char byte) {

 // 9600bps means each bit lasts on the wire for 104uS (approximately)

 GPIO = 0; delay_us(104); // Start bit is LOW

 // Check if bit0 is 1, then set the GPIO to HIGH, otherwise set it to LOW

 GPIO = (byte & (1 << 0)) ? 1 : 0; delay_us(104); // Use conditional statement

 GPIO = (bool) (byte & (1 << 1)); delay_us(104); // Case to bool

 GPIO = (byte & (1 << 2)); delay_us(104);

 GPIO = (byte & (1 << 3)); delay_us(104);

 GPIO = (byte & (1 << 4)); delay_us(104);

 GPIO = (byte & (1 << 5)); delay_us(104);

 GPIO = (byte & (1 << 6)); delay_us(104);

 GPIO = (byte & (1 << 7)); delay_us(104);

 GPIO = 1; delay_us(104); // STOP bit is HIGH}

UART Frame

UART Ports

Hardware complexity is low.
No clock signal needed
Has a parity bit to allow for error checking
As this is one to one connection between two devices, device addressing is not required.

The size of the data frame is limited to a maximum of 8 bits (some micros may support non-standard data
bits)
Doesn’t support multiple slave or multiple master systems
The baud rates of each UART must be within ~3% (or lower, depending on device tolerance) of each other

Figure 3. Simplified UART peripheral design for the STM32F429. SCLK is used for USART.

Benefits

Drawbacks

Hardware Design

WARNING: The above is missing a common ground connection

?

Software Driver

The UART chapter on LPC40xx has a really good summary page on how to write a UART driver. Read the
register description of each UART register to understand how to write a driver.

Figure 4. Memory Shadowing using DLAB Bit Register

In figure 4, you will see that registers RBR/THR and DLL have the same address 0x4000C000. These
registers are shadowed using the DLAB control bit. Setting DLAB bit to 1 allows the user to manipulate DLL
and DLM, and clearing DLAB to 0 will allow you to manipulate the THR and RBR registers.

The reason that the DLL register shares the same memory address as the RBR/THR may be historic. My
guess is that it was intentionally hidden such that a user cannot accidentally modify the DLL register. Even if
this case is not very significant present day, the manufacturer is probably using the same UART verilog code
from many decades ago.

In figure 4, you will see that register RBR and THR have the same address 0x4000C000. But also notice that
access to each respective register is only from read or write operations. For example, if you read from memory
location 0x4000C000, you will get the information from receive buffer and if you write to memory location
0x4000C000, you will write to a separate register which the transmit holding register. We call this Control
Space Divergence since access of two separate registers or devices is done on a single address using the
read/write control signal is used to multiplex between them. That address is considered to be Control Space
Divergent. Typically, the control space aligns with its respective memory or io space.

Memory Shadowing in UART driver

Control Space Divergence (CSD) in UART driver

Note that Control Space Divergence does not have a name outside of this course. It is Khalil Estell's
phrase for this phenomenon.

?

BAUD Rate Formula

Figure 5. Baud rate formula

To set the baud rate you will need to manipulate the DLM and DLL registers. Notice the 256*UnDLM in the
equation. That is merely another way to write the following (DLM << 8). Shifting a number is akin to multiplying
it by 2 to the power of the number of shifts. DLM and DLL are the lower and higher 8-bits of a 16 bit number
that divides the UART baudrate clock. DivAddVal and MulVal are used to fine tune the BAUD rate, but for this
class, you can simply get "close enough" and ignore these values. Take these into consideration when you
need an extremely close baudrate.

If you used 9600bps, and sent 1000 characters, your processor would basically enter a "busy-wait" loop and
spend 1040ms to send 1000 bytes of data. You can enhance this behavior by allowing your uart send function
to enter data to a queue, and return immediately, and you can use the THRE or "Transmitter Holding Register
Empty" interrupt indicator to remove your busy-wait loop while you wait for a character to be sent.

Advanced Design

Revision #23

Created 7 years ago by Admin

Updated 3 years ago by Preet Kang

http://books.socialledge.com/user/1
http://books.socialledge.com/user/8

