
Struct Address

Design a code module

Function Pointer

Basics of C

Learn basics of data structures

Learn how memory may be padded within data structures

Here is the basic use of data structures in C:

Struct Address
Objective

Review Basics

// Declare data structure in C using typedef

typedef struct {

 int i;

 char c;

 float f;

} my_struct_t;

// Pass data structure as a copy

void struct_as_param(my_struct_t s) {

 s.i = 0;

 s.c = 'c';

}

// Pass data structure as a pointer

void struct_as_pointer(my_struct_t *p) {

 p->i = 0;

 p->c = 'c';

}

// Zero out the struct

void struct_as_pointer(my_struct_t *p) {

 memset(p, 0, sizeof(*p));}

Padding

1. Use the struct below, and try this sample code

Note that there may be a compiler error in the snippet below that you are expected to resolve

on your own

Struct should ideally be placed before the main() and the printf() should be placed inside of

the main()

You should use your SJ embedded board because the behavior may be different on a different

compiler or the board

2.
Now un-comment the packed attribute such that the compiler packs the fields together, and print

them again.

Note:

Important: In your submission (could be comments in your submitted code), provide your summary

of the two print-outs. Explain why they are different, and try to draw conclusions based on the

behavior.

typedef struct {

 float f1; // 4 bytes

 char c1; // 1 byte

 float f2;

 char c2;

} /*__attribute__((packed))*/ my_s;

// TODO: Instantiate a struct of type my_s with the name of "s"

printf("Size : %d bytes\n"

 "floats 0x%p 0x%p\n"

 "chars 0x%p 0x%p\n",

 sizeof(s), &s.f1, &s.f2, &s.c1, &s.c2);

This article demonstrates how to design a new code module.

A header file:

Shall have #pragma once attribute (google it for the reason)

Shall NEVER have variables defined

#pragma once is a replacement of

Design a code module

Header File

//- Note: Remove all lines from your code that start with //-

//- Put this line as the very first line in your header module

#pragma once

//- #include all header files that THIS header needs

//- Do not include headers here that are not needed

//- For example, we do not need gpio.h file here, but maybe you can move this to switch_led.c

#include "gpio.h"

//- DO NOT put any variables here, like so:

static int do_not_do_this;

int definitely_do_not_do_this;

//- All functions without paramters should be marked as (void)

void switch_led_logic__initialize(void);

void switch_led_logic__run_once(void);

#ifndef YOUR_FILE_NAME__

#define YOUR_FILE_NAME__

Intent of #pragma once and #ifndef

When other code modules #include your header file, you only want functions to be declared once

The name of #ifndef can be anything unique, but must not conflict with other files

#include literally copies and pastes the contents of the file in the file wherever you have the

#include

A source file:

Shall have all variables defined as static; this will keep their visibility private to their file

void your_api(void);

#endif

Source File

//- Note: Remove all lines from your code that start with //-

//- Include the header file for which this code modules belongs to

#include "switch_led_logic.h"

//- Declare all variables as STATIC

static gpio_s my_led;

//- Define your public functions (part of this module's header file)

void switch_led_logic__initialize(void) {

 my_led = gpio__construct_as_output(GPIO__PORT_2, 0);

}

void switch_led_logic__run_once(void) {

 gpio__set(my_led);

}

Unit Test file

A unit-test file:

Shall #include the headers that you want (those that should not be "mocked")

Shall #include Mock headers to generate stubs (rather than the full implementation)

Clang auto-formatter will format the source code for you. It will also sort the #includes, so it is

recommended to put an empty line such that it sorts the #includes more elegantly. For example, you

can separate the FreeRTOS includes, system includes, and other includes.

Have two code modules, such as main.c and periodic_callbacks.c include a header file that

does not have #pragma once and observe what happens when you compile

Useful stuff

//- Note: Remove all lines from your code that start with //-

//- Include system includes first

#include <stdio.h>

//- FreeRTOS requires this header file inclusion before any of its soure code

//- This only applies to code included from FreeRTOS

#include "FreeRTOS.h"

#include "semphr.h"

#include "task.h"

//- Clang will sort these

#include "abc.h"#include "def.h"

Try the following

Pointers are the data types that can be used to store the address of some data stored in a computer's

memory. Pointers are mostly used as a data type that would store the address of other variables.

Pointers can point to data/functions where data could be stored as a constant or a variable. We can

also use pointers to dereference and get the value at whatever address the pointer is pointing at.

Function pointers are used to store the address of functions. We need function pointers to make

"callbacks", but let us understand the basic syntax first.

1. If the function return type is void

Let us re-read the syntax, *func_pointer is the pointer to a function. void is the return type of that

function, and finally void is the argument type of that function. The parenthesis around the function

pointer is a must otherwise it will change the meaning of the function pointer declarations.

2. If a function returns an int and has a char* as an input parameter, then the code looks like this:

Function Pointer
Pointers

// <varaible_type> *<name>

// example:

int data;int *pointer_to_integer = &data;

Function Pointers

Function Pointer Syntax

void (*func_pointer)(void);

In this example:

1. *func_pointer is the function pointer
2. int is the return type of that function
3. char* is the type of argument.

Code Example 1: Function pointers with an int as an argument

Code Example 2: Function pointer returns and taking argument as void data type.

int (*func_pointer)(char *)

Examples

#include <stdio.h>

void function(int arg) {

 printf("Function being called and arg is: %d\n", arg);

}

int main(void) {

 void (*func_pointer)(int);

 // assign function to the function pointer

 func_pointer = &function;

 // call the function pointer

 (*func_pointer)(6);

 // Or call it like this:

 func_pointer(6);}

// Let us "typedef" the function pointer: void void_function(void);

typedef void (*void_function_t)(void);

void foo(void) {

 puts("Hello");

}

Code Example 3: How to use an array of functions using function pointers.

int main(void) {

 // assign function to the function pointer

 void_function_t func_pointer = foo;

 // call the function pointer

 func_pointer();}

/* Example 1 */

void foo(void) { puts("foo"); }

void bar(void) { puts("bar"); }

// Typedef a function with void argument, returning nothing (void)

typedef void (*void_function_t)(void);

int main(void) {

 // assign array of functions to the function pointer

 void_function_t func_pointers[] = {foo, bar};

 // call the function pointers

 func_pointers[0]();

 func_pointers[1]();

}

/* Example 2 */

/* For simplicity considering number_one > number_two */

int add(int number_one, int number_two) { return number_one+number_two; }

int sub(int number_one, int number_two) { return number_one-number_two; }

int multiply(int number_one, int number_two) { return number_one*number_two; }

int divide(int number_one, int number_two) { if(number_two !=0) return (number_one/number_two); else return 0; }

int main(void) {

 int x = 10, y = 2;

 int choice,result;

 // assign array of functions to the function pointer

 int (*function_pointer[4])(int,int) = {add, sub, multiply, divide};

 printf("Enter 0: For Addition, 1 for subtraction, 2 for multiplication, and 3 for division: ");

 scanf("%d", &choice);

 // call the required function pointer

 result = function_pointer[choice](x, y);

 printf("Result: %d\r\n", result);

 return 0;}

