
Learn basics of data structures
Learn how memory may be padded within data structures

Here is the basic use of data structures in C:

Struct Address
Objective

Review Basics

// Declare data structure in C using typedef

typedef struct {

 int i;

 char c;

 float f;

} my_struct_t;

// Pass data structure as a copy

void struct_as_param(my_struct_t s) {

 s.i = 0;

 s.c = 'c';

}

// Pass data structure as a pointer

void struct_as_pointer(my_struct_t *p) {

 p->i = 0;

 p->c = 'c';

}

// Zero out the struct

void struct_as_pointer(my_struct_t *p) {

 memset(p, 0, sizeof(*p));}

Padding

1. Use the struct below, and try this sample code

Note that there may be a compiler error in the snippet below that you are expected to resolve on your
own

Struct should ideally be placed before the main() and the printf() should be placed inside of the

main()
You should use your SJ embedded board because the behavior may be different on a different
compiler or the board

2. Now un-comment the packed attribute such that the compiler packs the fields together, and print them
again.

Note:

Important: In your submission (could be comments in your submitted code), provide your summary of the
two print-outs. Explain why they are different, and try to draw conclusions based on the behavior.

typedef struct {

 float f1; // 4 bytes

 char c1; // 1 byte

 float f2;

 char c2;

} /*__attribute__((packed))*/ my_s;

// TODO: Instantiate a struct of type my_s with the name of "s"

printf("Size : %d bytes\n"

 "floats 0x%p 0x%p\n"

 "chars 0x%p 0x%p\n",

 sizeof(s), &s.f1, &s.f2, &s.c1, &s.c2);

Revision #3

Created 4 years ago by Preet Kang

Updated 4 years ago by Preet Kang

http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

