Struct Address

Objective

e Learn basics of data structures
e Learn how memory may be padded within data structures

Review Basics

Here is the basic use of data structures in C:

// Declare data structure in C using typedef
typedef struct {
int i;
char c;
float f;
} my struct t;
// Pass data structure as a copy
void struct as param(my struct t s) {
s.i=0;

s.c = 'c';

// Pass data structure as a pointer

void struct as pointer(my struct t *p) {
p->i = 0;
p->c = 'c';

}

// Zero out the struct

void struct as pointer(my struct t *p) {

memset(p, 0, sizeof(*p));}

Padding



1. Use the struct below, and try this sample code

¢ Note that there may be a compiler error in the snippet below that you are expected to resolve on your
own

® Struct should ideally be placed before the main() and the printf() should be placed inside of the

main()
e You should use your SJ embedded board because the behavior may be different on a different
compiler or the board

2. Now un-comment the packed attribute such that the compiler packs the fields together, and print them
again.

typedef struct {
float f1; // 4 bytes
char cl; // 1 byte
float f2;
char c2;
} /*__attribute_ ((packed))*/ my_s;
// TODO: Instantiate a struct of type my s with the name of "s"
printf("Size : %d bytes\n"
"floats Ox%p Ox%p\n"
"chars 0x%p 0x%p\n",

sizeof(s), &s.fl, &s.f2, &s.cl, &s.c2);

Note:

e Important: In your submission (could be comments in your submitted code), provide your summary of the
two print-outs. Explain why they are different, and try to draw conclusions based on the behavior.

Revision #3
Created 5 years ago by Preet Kang
Updated 4 years ago by Preet Kang


http://books.socialledge.com/user/8
http://books.socialledge.com/user/8

